Neuromorphic Photonics Circuits: Contemporary Review
- PMID: 38133036
- PMCID: PMC10745993
- DOI: 10.3390/nano13243139
Neuromorphic Photonics Circuits: Contemporary Review
Abstract
Neuromorphic photonics is a cutting-edge fusion of neuroscience-inspired computing and photonics technology to overcome the constraints of conventional computing architectures. Its significance lies in the potential to transform information processing by mimicking the parallelism and efficiency of the human brain. Using optics and photonics principles, neuromorphic devices can execute intricate computations swiftly and with impressive energy efficiency. This innovation holds promise for advancing artificial intelligence and machine learning while addressing the limitations of traditional silicon-based computing. Neuromorphic photonics could herald a new era of computing that is more potent and draws inspiration from cognitive processes, leading to advancements in robotics, pattern recognition, and advanced data processing. This paper reviews the recent developments in neuromorphic photonic integrated circuits, applications, and current challenges.
Keywords: artificial intelligence; imaging; machine learning; neuromorphic computing; photonic integrated circuit.
Conflict of interest statement
The authors declare no conflict of interest.
Figures













Similar articles
-
Photonics for Neuromorphic Computing: Fundamentals, Devices, and Opportunities.Adv Mater. 2025 Jan;37(2):e2312825. doi: 10.1002/adma.202312825. Epub 2024 Jul 16. Adv Mater. 2025. PMID: 39011981 Review.
-
Neuromorphic Photonics Based on Phase Change Materials.Nanomaterials (Basel). 2023 May 29;13(11):1756. doi: 10.3390/nano13111756. Nanomaterials (Basel). 2023. PMID: 37299659 Free PMC article. Review.
-
Electrolyte Gated Transistors for Brain Inspired Neuromorphic Computing and Perception Applications: A Review.Nanomaterials (Basel). 2025 Feb 24;15(5):348. doi: 10.3390/nano15050348. Nanomaterials (Basel). 2025. PMID: 40072151 Free PMC article. Review.
-
Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration.Adv Mater. 2023 Dec;35(51):e2301063. doi: 10.1002/adma.202301063. Epub 2023 Oct 30. Adv Mater. 2023. PMID: 37285592 Review.
-
Neuromorphic Sentiment Analysis Using Spiking Neural Networks.Sensors (Basel). 2023 Sep 6;23(18):7701. doi: 10.3390/s23187701. Sensors (Basel). 2023. PMID: 37765758 Free PMC article.
Cited by
-
Exploring Types of Photonic Neural Networks for Imaging and Computing-A Review.Nanomaterials (Basel). 2024 Apr 17;14(8):697. doi: 10.3390/nano14080697. Nanomaterials (Basel). 2024. PMID: 38668191 Free PMC article. Review.
-
Quantum Dots for Resistive Switching Memory and Artificial Synapse.Nanomaterials (Basel). 2024 Sep 29;14(19):1575. doi: 10.3390/nano14191575. Nanomaterials (Basel). 2024. PMID: 39404302 Free PMC article. Review.
References
-
- Schuman C.D., Kulkarni S.R., Parsa M., Mitchell J.P., Date P., Kay B. Opportunities for Neuromorphic Computing Algorithms and Applications|Nature Computational Science. [(accessed on 22 October 2023)];Nat. Comput. Sci. 2022 2:10–19. doi: 10.1038/s43588-021-00184-y. Available online: https://www.nature.com/articles/s43588-021-00184-y. - DOI - PubMed
-
- van de Burgt Y., Santoro F., Tee B., Alibart F. Editorial: Focus on organic materials, bio-interfacing and processing in neuromorphic computing and artificial sensory applications. Neuromorphic Comput. Eng. 2023;3:040202. doi: 10.1088/2634-4386/ad06ca. - DOI
-
- Alagappan G., Ong J.R., Yang Z., Ang T.Y.L., Zhao W., Jiang Y., Zhang W., Png C.E. Leveraging AI in Photonics and Beyond. [(accessed on 13 November 2023)];Photonics. 2022 9:75. doi: 10.3390/photonics9020075. Available online: https://www.mdpi.com/2304-6732/9/2/75. - DOI
-
- Alzubaidi L., Zhang J., Humaidi A.J., Al-Dujaili A., Duan Y., Al-Shamma O., Santamaría J., Fadhel M.A., Al-Amidie M., Farhan L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. [(accessed on 25 October 2023)];J. Big Data. 2021 8:1–74. doi: 10.1186/s40537-021-00444-8. Available online: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00.... - DOI - DOI - PMC - PubMed
-
- Zhou J., Cui G., Hu S., Zhang Z., Yang C., Liu Z., Wang L., Li C., Sun M. Graph neural networks: A review of methods and applications. AI Open. 2020;1:57–81. doi: 10.1016/j.aiopen.2021.01.001. - DOI
Publication types
LinkOut - more resources
Full Text Sources