Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec 22;43(1):8.
doi: 10.1007/s00299-023-03120-8.

Arabidopsis PDE1 confers phosphate-deficiency tolerance in primary root growth

Affiliations

Arabidopsis PDE1 confers phosphate-deficiency tolerance in primary root growth

Lingyu Wang et al. Plant Cell Rep. .

Abstract

PDE1 acts as a mediator of primary root growth in response to Pi deficiency. Phosphorus is commonly considered as a limiting nutrient for plant growth, which is mainly due to the immobility and uneven distribution of phosphate (Pi) in soils so that available Pi is not adequate in the rhizosphere. Although various mediators have been identified in Pi sensing and response, more details need to be uncovered in plant Pi-deficiency tolerance. Here, we isolated a mutant, termed pde1 (phosphate-deficiency sensitive 1), showing the hypersensitive Pi-deficiency-induced growth inhibition of primary roots. PDE1 encodes a hydroxyphenylpyruvate reductase with rare activity in vitro and repressed by Pi deficiency. Histochemical analysis displayed that Pi-deprived pde1 accumulated more Fe and reactive oxygen species (ROS) in primary roots than the wild type (WT). Addition of ferrozine, a Fe2+ chelator, or a ROS scavenger (e.g., thiourea and potassium iodide), alleviated the sensitivity of Pi-deficiency in pde1 primary roots. By contrast, pde1 showed reduced cotyledon expansion rate with treatment of H2O2 compared to WT. Taken together, these results suggested that PDE1 is responsible for regulating primary root growth in response to Pi deficiency, which is associated with ROS.

Keywords: Hydroxyphenylpyruvate reductase; Iron; Phosphate deficiency; Primary root growth; Reactive oxygen species.

PubMed Disclaimer

References

    1. Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C, Teulon JM, Creff A, Bissler M, Brouchoud C, Hagège A, Müller J, Chiarenza S, Javot H, Becuwe-Linka N, David P, Péret B, Delannoy E, Thibaud MC, Armengaud J, Abel S, Pellequer JL, Nussaume L, Desnos T (2017) Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun 8:15300 - PubMed - PMC
    1. Bian L, Wang Y, Bai H, Li H, Zhang C, Chen J, Xu W (2021) Melatonin-ROS signal module regulates plant lateral root development. Plant Signal Behav 16:1901447 - PubMed - PMC
    1. Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003) Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant, Cell Environ 26:1839–1850
    1. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743 - PubMed
    1. Crombez H, Motte H, Beeckman T (2019) Tackling plant phosphate starvation by the roots. Dev Cell 48:599–615 - PubMed

MeSH terms

LinkOut - more resources