Small-angle X-ray scattering structural insights into alternative pathway of actin oligomerization associated with inactivated state
- PMID: 38141525
- DOI: 10.1016/j.bbrc.2023.149340
Small-angle X-ray scattering structural insights into alternative pathway of actin oligomerization associated with inactivated state
Abstract
In addition to the well-known monomeric globular (G-actin) and polymeric fibrillar (F-actin) forms, actin can exist in the so-called inactivated form (I-actin). Hsp70 chaperon, prefoldin, and CCT chaperonin are required to obtain native globular state. In contrast, I-actin is spontaneously formed in the absence of intracellular folding machinery. I-actin can be obtained from G-actin by elimination of divalent ion, incubation in presence of small concentrations of denaturants, and by heat exposure. Since G-actin is a quasi-stationary, thermodynamically unstable form, it can gradually transform into inactivated state in the absence of chelating/denaturating agents or heat exposure, but the transition is much slower. I-actin was shown to associate into oligomers up to the molecular weight of 14-16 G-actin monomers, though the structure of these oligomers remains uncharacterized. This study employs small-angle X-ray scattering to reveal novel insights into the oligomerization process of such spontaneously formed inactivated actin. These oligomers are differentiated from F-actin through comparative analysis, highlighting a unique oligomerization pathway.
Copyright © 2023 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
