Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 15:326:121592.
doi: 10.1016/j.carbpol.2023.121592. Epub 2023 Nov 18.

Xylan cinnamoylation for reinforcing poly (butylene adipate-co-terephthalate): Molecule design and interaction optimization

Affiliations

Xylan cinnamoylation for reinforcing poly (butylene adipate-co-terephthalate): Molecule design and interaction optimization

Yanjun Chen et al. Carbohydr Polym. .

Abstract

PBAT composites with biomass fillers have gained considerable attention as alternatives to non-biodegradable plastics. This work employed xylan derivatives as fillers for PBAT composites. Xylan was modified by introducing cinnamoyl side groups which limit the hydrogen bonding and construct π-π stacking interactions with PBAT chains. The resultant xylan cinnamates (XCi) show degree of substitution (DS) of 0.55-1.89, glass-transition temperatures (Tg) of 146.5-175.0 °C and increased hydrophobicity, which can be simply controlled by varying the molar ratio of reactants. NMR results demonstrate that the C3-OH of xylopyranosyl unit is more accessible to cinnamoylation. XCi fillers (30-50 wt%) were incorporated into PBAT through melt compounding. The filler with a DS of 0.97 exhibited the optimal reinforcing effect, showing superior tensile strength (19.4 MPa) and elongation at break (330.9 %) at a high filling content (40 wt%), which is even beyond the neat PBAT. SEM and molecular dynamics simulation suggest improved compatibility and strengthened molecular interaction between XCi and PBAT, which explains the suppressed melting/crystallization behavior, the substantial increase in Tg (-34.5 → -1.8 °C) and the superior mechanical properties of the composites. This research provides valuable insights into the preparation of high-performance composites by designing the molecular architecture of xylan and optimizing the associated interactions.

Keywords: Cinnamoylation; Compatibility; Mechanical properties; PBAT; Thermal behavior; Xylan.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources