Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Feb 18;927(2):163-9.
doi: 10.1016/0167-4889(87)90130-3.

Specificity and biological significance of microtubule-associated protein-DNA interactions in chick

Specificity and biological significance of microtubule-associated protein-DNA interactions in chick

J M Hancock et al. Biochim Biophys Acta. .

Abstract

The interactions between chick brain microtubule associated proteins (MAPs) and chick DNA have been examined using DNA-cellulose chromatography, cross-blotting, and nitrocellulose filter-binding. Comparison of nitrocellulose filter-binding and cross-blotting results show that while MAPs and a minor, Mr 48,000, protein show significant binding at 50 mM NaCl, only the latter continues to bind a significant amount of DNA at 150 mM NaCl, suggesting an ionic basis for the MAP-DNA interactions. MAP-DNA interactions also show weak preference for AT-rich fractions, and are sensitive to S1 nuclease digestion. We suggest that the MAPs bind preferentially to single-stranded DNA. The binding may involve an interaction between the DNA phosphates and the highly cationic tubulin-binding domain of the MAPs. Repetitive fractions of the chick genome prepared both by hydroxyapatite chromatography and by S1 nuclease digestion show binding to a number of minor proteins present in preparations of microtubule proteins, as well as to the MAPs. We conclude that the MAPs probably do not bind specifically to repetitive DNA, in contrast to earlier reports using mouse DNA. MAP-DNA interactions are therefore unlikely to be involved in the attachment of microtubules to mitotic chromosomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources