Automated Detection of Abnormal Optical Coherence Tomography B-scans Using a Deep Learning Artificial Intelligence Neural Network Platform
- PMID: 38146885
- DOI: 10.1097/IIO.0000000000000519
Automated Detection of Abnormal Optical Coherence Tomography B-scans Using a Deep Learning Artificial Intelligence Neural Network Platform
Conflict of interest statement
K.E.T.: Alimera (consultant), Apellis (consultant), Bausch and Lomb (consultant), Eyepoint (consultant), Genentech (consultant, speaker’s bureau), Iveric Bio (speaker’s bureau), Regeneron (research), Regenxbio (research), Zeiss (research). H.R., N.M., Q.Z., H.B., G.L., S.Y., N.D.S., H.J., K.P.: Zeiss (employees). R.P.S. reports personal fees from Genentech/Roche, Alcon, Novartis, Regeneron, Asclepix, Gyroscope, Bausch and Lomb, Apellis. The remaining authors declare that they have no conflicts of interest to disclose.
References
-
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.
-
- Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–564.
-
- Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol. 2012;60:428–431.
-
- Ludwig CA, Chen TA, Hernandez-Boussard T, et al. The epidemiology of retinopathy of prematurity in the United States. Ophthalmic Surg Lasers Imaging Retin. 2017;48:553–562.
-
- Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Global Heal. 2017;5:e1221–e1234.
MeSH terms
LinkOut - more resources
Full Text Sources
