The positive impact of the NtTAS14-like1 gene on osmotic stress response in Nicotiana tabacum
- PMID: 38155260
- DOI: 10.1007/s00299-023-03118-2
The positive impact of the NtTAS14-like1 gene on osmotic stress response in Nicotiana tabacum
Abstract
NtTAS14-like1 enhances osmotic tolerance through coordinately activating the expression of osmotic- and ABA-related genes. Osmotic stress is one of the most important limiting factors for tobacco (Nicotiana tabacum) growth and development. Dehydrin proteins are widely involved in plant adaptation to osmotic stress, but few of these proteins have been functionally characterized in tobacco. Here, to identify genes required for osmotic stress response in tobacco, an encoding dehydrin protein gene NtTAS14-like1 was isolated based on RNA sequence data. The expression of NtTAS14-like1 was obviously induced by mannitol and abscisic acid (ABA) treatments. Knock down of NtTAS14-like1 expression reduced osmotic tolerance, while overexpression of NtTAS14-like1 conferred tolerance to osmotic stress in transgenic tobacco plants, as determined by physiological analysis of the relative electrolyte leakage and malonaldehyde accumulation. Further expression analysis by quantitative real-time PCR indicated that NtTAS14-like1 participates in osmotic stress response possibly through coordinately activating osmotic- and ABA-related genes expression, such as late embryogenesis abundant (NtLEA5), early responsive to dehydration 10C (NtERD10C), calcium-dependent protein kinase 2 (NtCDPK2), ABA-responsive element-binding protein (NtAREB), ABA-responsive element-binding factor 1 (NtABF1), dehydration-responsive element-binding genes (NtDREB2A), xanthoxin dehydrogenase/reductase (NtABA2), ABA-aldehyde oxidase 3 (NtAAO3), 9-cis-epoxycarotenoid dioxygenase (NtNCED3). Together, this study will facilitate to improve our understandings of molecular and functional properties of plant TAS14 proteins and to improve genetic evidence on the involvement of the NtTAS14-like1 in osmotic stress response of tobacco.
Keywords: Dehydrin proteins; Gene function; Nicotiana tabacum; Osmotic stress; TAS14.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Similar articles
-
Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway.Plant Cell Rep. 2016 Nov;35(11):2309-2323. doi: 10.1007/s00299-016-2036-5. Epub 2016 Aug 19. Plant Cell Rep. 2016. PMID: 27541276
-
Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato.J Plant Physiol. 2012 Mar 15;169(5):459-68. doi: 10.1016/j.jplph.2011.11.018. Epub 2012 Jan 9. J Plant Physiol. 2012. PMID: 22226709
-
Sugarcane ScDREB2B-1 Confers Drought Stress Tolerance in Transgenic Nicotiana benthamiana by Regulating the ABA Signal, ROS Level and Stress-Related Gene Expression.Int J Mol Sci. 2022 Aug 23;23(17):9557. doi: 10.3390/ijms23179557. Int J Mol Sci. 2022. PMID: 36076957 Free PMC article.
-
ABA signaling in stress-response and seed development.Plant Cell Rep. 2013 Jul;32(7):959-70. doi: 10.1007/s00299-013-1418-1. Epub 2013 Mar 28. Plant Cell Rep. 2013. PMID: 23535869 Review.
-
ABA-dependent and ABA-independent signaling in response to osmotic stress in plants.Curr Opin Plant Biol. 2014 Oct;21:133-139. doi: 10.1016/j.pbi.2014.07.009. Epub 2014 Aug 9. Curr Opin Plant Biol. 2014. PMID: 25104049 Review.
References
-
- Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274. https://doi.org/10.1007/s00299-006-0204-8 - DOI - PubMed
-
- Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123. https://doi.org/10.1007/s12033-012-9538-3 - DOI - PubMed
-
- Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821. https://doi.org/10.4161/psb.20351 - DOI - PubMed - PMC
-
- Bahrami-Rad S, Hajiboland R (2017) Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: comparison of root with foliar application. Ann Agric Sci 62:121–130. https://doi.org/10.1016/j.aoas.2017.08.001 - DOI
-
- Brini F, Hanin M, Lumbreras V et al (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026. https://doi.org/10.1007/s00299-007-0412-x - DOI - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources