Network Viscoelasticity from Brillouin Spectroscopy
- PMID: 38156622
- PMCID: PMC10865340
- DOI: 10.1021/acs.biomac.3c01073
Network Viscoelasticity from Brillouin Spectroscopy
Abstract
Even though the physical nature of shear and longitudinal moduli are different, empirical correlations between them have been reported in several biological systems. This correlation is of fundamental interest and immense practical value in biomedicine due to the importance of the shear modulus and the possibility to map the longitudinal modulus at high-resolution with all-optical spectroscopy. We investigate the origin of such a correlation in hydrogels. We hypothesize that both moduli are influenced in the same direction by underlying physicochemical properties, which leads to the observed material-dependent correlation. Matching theoretical models with experimental data, we quantify the scenarios in which the correlation holds. For polymerized hydrogels, a correlation was found across different hydrogels through a common dependence on the effective polymer volume fraction. For hydrogels swollen to equilibrium, the correlation is valid only within a given hydrogel system, as the moduli are found to have different scalings on the swelling ratio. The observed correlation allows one to extract one modulus from another in relevant scenarios.
Conflict of interest statement
The authors declare no competing financial interest.
Figures







Similar articles
-
Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.Int J Cosmet Sci. 2021 Dec;43(6):748-763. doi: 10.1111/ics.12750. Epub 2021 Dec 2. Int J Cosmet Sci. 2021. PMID: 34741768
-
Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure.J Control Release. 2008 May 22;128(1):71-9. doi: 10.1016/j.jconrel.2008.02.006. Epub 2008 Feb 21. J Control Release. 2008. PMID: 18433910
-
Engineering hydrogel viscoelasticity.J Mech Behav Biomed Mater. 2019 Jan;89:162-167. doi: 10.1016/j.jmbbm.2018.09.031. Epub 2018 Sep 21. J Mech Behav Biomed Mater. 2019. PMID: 30286375
-
[Research progress on anti-swelling hydrogels in biomedical field].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Aug 25;41(4):848-853. doi: 10.7507/1001-5515.202312008. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024. PMID: 39218613 Free PMC article. Review. Chinese.
-
Conductive Hydrogels-A Novel Material: Recent Advances and Future Perspectives.J Agric Food Chem. 2020 Jul 15;68(28):7269-7280. doi: 10.1021/acs.jafc.0c00642. Epub 2020 Jul 6. J Agric Food Chem. 2020. PMID: 32574052 Review.
Cited by
-
The viscoelastic properties of Nicotiana tabacum BY-2 suspension cell lines adapted to high osmolarity.BMC Plant Biol. 2025 Feb 25;25(1):255. doi: 10.1186/s12870-025-06232-3. BMC Plant Biol. 2025. PMID: 39994523 Free PMC article.
-
Multiscale Elasticity of Epoxy Networks by Rheology and Brillouin Light Spectroscopy.J Phys Chem B. 2024 Dec 19;128(50):12628-12637. doi: 10.1021/acs.jpcb.4c06492. Epub 2024 Dec 4. J Phys Chem B. 2024. PMID: 39630480 Free PMC article.
-
Beyond Water Content: Unraveling Stiffness in Hydrated Materials by a Correlative Brillouin-Raman Approach.ACS Photonics. 2025 Jun 21;12(7):3794-3802. doi: 10.1021/acsphotonics.5c00808. eCollection 2025 Jul 16. ACS Photonics. 2025. PMID: 40688183 Free PMC article.
-
Diagnostic potential of blood plasma longitudinal viscosity measured using Brillouin light scattering.Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2323016121. doi: 10.1073/pnas.2323016121. Epub 2024 Aug 1. Proc Natl Acad Sci U S A. 2024. PMID: 39088388 Free PMC article.
-
Non-Stoichiometric Effects on Viscoelasticity in DGEBA-EDA Systems: Insights from Brillouin Light Scattering.J Phys Chem B. 2024 Nov 7;128(44):11031-11038. doi: 10.1021/acs.jpcb.4c06661. Epub 2024 Oct 25. J Phys Chem B. 2024. PMID: 39449538 Free PMC article.
References
-
- Landau L.D.; Lifshitz E.M.. Course of Theoretical Physics. Theory of Elasticity, 2nd ed.; Pergamon Press: Oxford, 1970; Vol. 7.
-
- Müller D. J.; Dumitru A. C.; Lo Giudice C.; Gaub H. E.; Hinterdorfer P.; Hummer G.; De Yoreo J. J.; Dufrene Y. F.; Alsteens D. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem. Rev. 2021, 121 (19), 11701–11725. 10.1021/acs.chemrev.0c00617. - DOI - PubMed
-
- Liu W.; Wu C. Rheological Study of Soft Matters: A Review of Microrheology and Microrheometers. Macromol. Chem. Phys. 2018, 219, 1022–1352. 10.1002/macp.201700307. - DOI
-
- Kennedy B. F.; Wijesinghe P.; Sampson D. D. The emergence of optical elastography in biomedicine. Nat. Photonics 2017, 11, 215–221. 10.1038/nphoton.2017.6. - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources