Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Feb;95(2):96-103.
doi: 10.1007/s00115-023-01589-y. Epub 2023 Dec 29.

[Glioblastomas exploit neuronal properties: a key to new forms of treatment?]

[Article in German]
Affiliations
Review

[Glioblastomas exploit neuronal properties: a key to new forms of treatment?]

[Article in German]
Varun Venkataramani et al. Nervenarzt. 2024 Feb.

Abstract

Recent research indicates that glioblastomas exhibit different neural properties that successfully promote tumor growth, colonize the brain and resist standard treatment. This opens up opportunities for new therapeutic strategies giving rise to the new research field of cancer neuroscience at the interface between oncology and neuroscience. It has been observed that glioblastomas as well as other incurable brain tumor entities, form multicellular tumor networks through long cell projections called tumor microtubes that are molecularly controlled by neuronal developmental mechanisms. These networks provide the tumor with efficient communication and resilience to external perturbations and are tumor-intrinsic continuously activated by pacemaker-like tumor cells. In addition, neuron-tumor networks have been discovered that also exploit direct glutamatergic synaptic contacts between nerve cells and tumor cells. These different neuronal mechanisms of the glioblastoma networks contribute to malignancy and resistance, which is why strategies to separate these multicellular networks were developed and are currently being investigated in initial clinical trials with respect to their therapeutic suitability.

Neueste Forschungsergebnisse deuten darauf hin, dass Glioblastome verschiedene neuronale Eigenschaften ausbilden und dadurch das Tumorwachstum fördern, das Gehirn kolonisieren und Standardtherapien widerstehen. Dies eröffnet Möglichkeiten für neue therapeutische Strategien und begründet das neue Forschungsfeld „Cancer Neuroscience“ an der Schnittstelle zwischen Onkologie und den Neurowissenschaften. Glioblastome und andere unheilbare Hirntumorentitäten bilden multizelluläre Tumornetzwerke durch lange Zellfortsätze aus, die durch neuronale Entwicklungsmechanismen molekular gesteuert werden. Diese Netzwerke ermöglichen dem Tumor effiziente Kommunikation und Resilienz gegen äußere Störungen und werden tumorintrinsisch durch schrittmacherähnliche Tumorzellen kontinuierlich aktiviert. Zusätzlich existieren Neuron-Tumor-Netzwerke durch direkte glutamaterge synaptische Kontakte zwischen Nervenzellen und Tumorzellen. Diese verschiedenen neuronalen Mechanismen der Glioblastomnetzwerke tragen zur Malignität und Resistenz bei, weshalb Strategien zur Trennung dieser multizellulären Netzwerke entwickelt werden, die aktuell in ersten klinischen Studien hinsichtlich ihrer therapeutischen Eignung untersucht werden.

Keywords: Cancer neuroscience; Glioblastoma networks; Neuron-tumor networks; Neuronal developmental mechanisms; Paracrine signaling substances.

PubMed Disclaimer

Similar articles

  • Glioblastoma hijacks neuronal mechanisms for brain invasion.
    Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK, Wißmann N, Botz M, Soyka SJ, Beretta CA, Pramatarov RL, Fankhauser L, Garofano L, Freudenberg A, Wagner J, Tanev DI, Ratliff M, Xie R, Kessler T, Hoffmann DC, Hai L, Dörflinger Y, Hoppe S, Yabo YA, Golebiewska A, Niclou SP, Sahm F, Lasorella A, Slowik M, Döring L, Iavarone A, Wick W, Kuner T, Winkler F. Venkataramani V, et al. Cell. 2022 Aug 4;185(16):2899-2917.e31. doi: 10.1016/j.cell.2022.06.054. Epub 2022 Jul 31. Cell. 2022. PMID: 35914528
  • Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing.
    Tetzlaff SK, Reyhan E, Layer N, Bengtson CP, Heuer A, Schroers J, Faymonville AJ, Langeroudi AP, Drewa N, Keifert E, Wagner J, Soyka SJ, Schubert MC, Sivapalan N, Pramatarov RL, Buchert V, Wageringel T, Grabis E, Wißmann N, Alhalabi OT, Botz M, Bojcevski J, Campos J, Boztepe B, Scheck JG, Conic SH, Puschhof MC, Villa G, Drexler R, Zghaibeh Y, Hausmann F, Hänzelmann S, Karreman MA, Kurz FT, Schröter M, Thier M, Suwala AK, Forsberg-Nilsson K, Acuna C, Saez-Rodriguez J, Abdollahi A, Sahm F, Breckwoldt MO, Suchorska B, Ricklefs FL, Heiland DH, Venkataramani V. Tetzlaff SK, et al. Cell. 2025 Jan 23;188(2):390-411.e36. doi: 10.1016/j.cell.2024.11.002. Epub 2024 Dec 6. Cell. 2025. PMID: 39644898
  • Brain Tumor Networks in Diffuse Glioma.
    Yang Y, Schubert MC, Kuner T, Wick W, Winkler F, Venkataramani V. Yang Y, et al. Neurotherapeutics. 2022 Oct;19(6):1832-1843. doi: 10.1007/s13311-022-01320-w. Epub 2022 Nov 10. Neurotherapeutics. 2022. PMID: 36357661 Free PMC article. Review.
  • Neuronal signatures in cancer.
    Jung E, Alfonso J, Monyer H, Wick W, Winkler F. Jung E, et al. Int J Cancer. 2020 Dec 15;147(12):3281-3291. doi: 10.1002/ijc.33138. Epub 2020 Jun 19. Int J Cancer. 2020. PMID: 32510582 Review.
  • Disconnecting multicellular networks in brain tumours.
    Venkataramani V, Schneider M, Giordano FA, Kuner T, Wick W, Herrlinger U, Winkler F. Venkataramani V, et al. Nat Rev Cancer. 2022 Aug;22(8):481-491. doi: 10.1038/s41568-022-00475-0. Epub 2022 Apr 29. Nat Rev Cancer. 2022. PMID: 35488036 Review.

References

Literatur

    1. Bahcheli AT, Min H‑K, Bayati M et al (2023) Pan-cancer analysis of the ion permeome reveals functional regulators of glioblastoma aggression - DOI
    1. Barron T, Yalçın B, Mochizuki A et al (2022) GABAergic neuron-to-glioma synapses in diffuse midline gliomas. bioRxiv
    1. Bergles DE, Roberts JD, Somogyi P et al (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191 - DOI - PubMed
    1. Blankenship AG, Feller MB (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 11:18–29 - DOI - PubMed
    1. Chen P, Wang W, Liu R et al (2022) Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature

LinkOut - more resources