Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 5:964:176294.
doi: 10.1016/j.ejphar.2023.176294. Epub 2023 Dec 28.

Early growth response 1/Krüppel-like factor 5 pathway inhibitor alleviates lipopolysaccharide-induced lung injury by promoting autophagy

Affiliations
Free article

Early growth response 1/Krüppel-like factor 5 pathway inhibitor alleviates lipopolysaccharide-induced lung injury by promoting autophagy

Kang Zou et al. Eur J Pharmacol. .
Free article

Abstract

Early transcription factors play critical roles in the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Early growth response 1 (EGR1) is a transcription factor essential for various biological processes, including regulation of metabolism, differentiation, and inflammation. However, its role in ALI has been poorly reported. In this study, we aimed to determine the effect of EGR1 on ALI to gain insights into the theoretical basis for further treatment of ALI. By employing concerted molecular biology techniques, we showed that EGR1 protein was upregulated in mice. EGR1 protein was upregulated in mice and human lung epithelial cells in response to lipopolysaccharide (LPS) stimulation. EGR1 knockdown promoted autophagy and reduced LPS-induced pro-inflammatory mediator production. EGR1 was preferentially bound to the GCGTGGGCG motif region and EGR1-binding peak-related genes were mainly enriched in autophagy and injury stress-related pathways. Additionally, EGR1 promoted Krüppel-like factor 5 (KLF5) transcription by binding to the KLF5 promoter region, and KLF5 knockdown significantly decreased inflammatory damage, suggesting that EGR1 promotes ALI progression by regulating KLF5 expression. Furthermore, ML264, an inhibitor of the EGR1/KLF5 pathway axis, displayed a protective role in ALI to reduce inflammation. In conclusion, our findings demonstrate the potential of EGR1 knockdown to inhibit KLF5 and promote autophagy, further reducing the inflammatory response to mitigate ALI/ARDS. The EGR1/KLF5 pathway axis may be a valuable therapeutic target for the treatment of ALI/ARDS.

Keywords: Acute lung injury; Acute respiratory distress syndrome; Autophagy; Early growth response 1; Krüppel-like factor 5; ML264.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Similar articles

Cited by

MeSH terms

LinkOut - more resources