Brunn-Minkowski Inequality for -Convolution Bodies via Ball's Bodies
- PMID: 38161409
- PMCID: PMC10756892
- DOI: 10.1007/s12220-023-01508-2
Brunn-Minkowski Inequality for -Convolution Bodies via Ball's Bodies
Abstract
We consider the problem of finding the best function such that for any pair of convex bodies the following Brunn-Minkowski type inequality holds where is the -convolution body of K and L. We prove a sharp inclusion of the family of Ball's bodies of an -concave function in its super-level sets in order to provide the best possible function in the range , characterizing the equality cases.
Keywords: Ball‘s bodies; Brunn–Minkowski inequality; -Convolution bodies.
© The Author(s) 2023.
References
-
- Alonso-Gutiérrez, D., Bernués, J., González Merino, B.: Zhang’s inequality for log-concave functions. Geometric Aspects of Functional Analysis—Israel Seminar (GAFA) 2017–2019. Lecture Notes in Mathematics, Vol. 2256, pp. 29–48 (2020)
-
- Alonso-Gutiérrez D, Jiménez CH, Villa R. Brunn-Minkowski and Zhang inequalities for convolution bodies. Adv. Math. 2013;238:50–69. doi: 10.1016/j.aim.2013.01.013. - DOI
-
- Ball K. Logarithmically concave functions and sections of convex sets in . Studia Math. 1988;88:69–84. doi: 10.4064/sm-88-1-69-84. - DOI
-
- Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.H.: Geometry of isotropic convex bodies. Mathematical surveys and monographs, Vol. 196. American Mathematical Society, Providence, RI (2014)
-
- Gardner RJ, Zhang G. Affine inequalities and radial mean bodies. Am. J. Math. 1998;120(3):505–528. doi: 10.1353/ajm.1998.0021. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources