Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Feb:143:107076.
doi: 10.1016/j.bioorg.2023.107076. Epub 2023 Dec 30.

Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents

Affiliations
Free article
Review

Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents

Magdalena Podolak et al. Bioorg Chem. 2024 Feb.
Free article

Abstract

Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.

Keywords: Analogue/fragment-based drug design; Anticancer agents; Antiparasitic agents; Inhibitors; Molecular hybridization; Multi-target agents; Natural molecules; Privileged heterocycles; Tubulin.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

MeSH terms

LinkOut - more resources