Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Dec 18;13(6):299-308.
doi: 10.5500/wjt.v13.i6.299.

Anti-thymocyte globulin for treatment of T-cell-mediated allograft rejection

Affiliations
Review

Anti-thymocyte globulin for treatment of T-cell-mediated allograft rejection

Sumit Acharya et al. World J Transplant. .

Abstract

Anti-thymocyte globulin (ATG) is a pivotal immunosuppressive therapy utilized in the management of T-cell-mediated rejection and steroid-resistant rejection among renal transplant recipients. Commercially available as Thymoglobulin (rabbit-derived, Sanofi, United States), ATG-Fresenius S (rabbit-derived), and ATGAM (equine-derived, Pfizer, United States), these formulations share a common mechanism of action centered on their interaction with cell surface markers of immune cells, imparting immunosuppressive effects. Although the prevailing mechanism predominantly involves T-cell depletion via the com plement-mediated pathway, alternate mechanisms have been elucidated. Optimal dosing and treatment duration of ATG have exhibited variance across ran domised trials and clinical reports, rendering the establishment of standardized guidelines a challenge. The spectrum of risks associated with ATG administration spans from transient adverse effects such as fever, chills, and skin rash in the acute phase to long-term concerns related to immunosuppression, including susceptibility to infections and malignancies. This comprehensive review aims to provide a thorough exploration of the current understanding of ATG, encom passing its mechanism of action, clinical utility in the treatment of acute renal graft rejections, specifically steroid-resistant cases, efficacy in rejection episode reversal, and a synthesis of findings from different eras of maintenance immunosuppression. Additionally, it delves into the adverse effects associated with ATG therapy and its impact on long-term graft function. Furthermore, the review underscores the existing gaps in evidence, particularly in the context of the Banff classification of rejections, and highlights the challenges faced by clinicians when navigating the available literature to strike the optimal balance between the risks and benefits of ATG utilization in renal transplantation.

Keywords: Anti-thymocyte globulin; Biopsy confirmed acute rejection; Steroid-resistant rejection; T-cell-mediated rejection.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: All authors state that there is no conflict of interest to disclose.

Figures

Figure 1
Figure 1
Mechanisms of action of anti-thymocyte globulin. A: T-cell depletion in blood through complement-mediated lysis and in secondary lymphoid tissue by T cell apoptosis; B: B-cell apoptosis by anti-thymocyte globulin (ATG); C: ATG-VLA-4 complex leading to decreased adhesion proteins in endothelial cells required by leukocyte/endothelium interaction; D: Dendritic cell maturation by HLA1/ATG interaction; E: Increased natural killer T cells.

Similar articles

Cited by

References

    1. Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Robinson A, Wainright JL, Haynes CR, Snyder JJ, Kasiske BL, Israni AK. OPTN/SRTR 2016 Annual Data Report: Kidney. Am J Transplant. 2018;18 Suppl 1:18–113. - PMC - PubMed
    1. Clayton PA, McDonald SP, Russ GR, Chadban SJ. Long-Term Outcomes after Acute Rejection in Kidney Transplant Recipients: An ANZDATA Analysis. J Am Soc Nephrol. 2019;30:1697–1707. - PMC - PubMed
    1. Loupy A, Haas M, Roufosse C, Naesens M, Adam B, Afrouzian M, Akalin E, Alachkar N, Bagnasco S, Becker JU, Cornell LD, Clahsen-van Groningen MC, Demetris AJ, Dragun D, Duong van Huyen JP, Farris AB, Fogo AB, Gibson IW, Glotz D, Gueguen J, Kikic Z, Kozakowski N, Kraus E, Lefaucheur C, Liapis H, Mannon RB, Montgomery RA, Nankivell BJ, Nickeleit V, Nickerson P, Rabant M, Racusen L, Randhawa P, Robin B, Rosales IA, Sapir-Pichhadze R, Schinstock CA, Seron D, Singh HK, Smith RN, Stegall MD, Zeevi A, Solez K, Colvin RB, Mengel M. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am J Transplant. 2020;20:2318–2331. - PMC - PubMed
    1. Rekers NV, de Fijter JW, Claas FH, Eikmans M. Mechanisms and risk assessment of steroid resistance in acute kidney transplant rejection. Transpl Immunol. 2016;38:3–14. - PubMed
    1. Thiyagarajan UM, Ponnuswamy A, Bagul A. Thymoglobulin and its use in renal transplantation: a review. Am J Nephrol. 2013;37:586–601. - PubMed