Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Oct;69(10):477-480.
doi: 10.1038/s10038-023-01215-4. Epub 2024 Jan 4.

Prediction of protein structure and AI

Affiliations
Review

Prediction of protein structure and AI

Shiho Ohno et al. J Hum Genet. 2024 Oct.

Abstract

AlphaFold, an artificial intelligence (AI)-based tool for predicting the 3D structure of proteins, is now widely recognized for its high accuracy and versatility in the folding of human proteins. AlphaFold is useful for understanding structure-function relationships from protein 3D structure models and can serve as a template or a reference for experimental structural analysis including X-ray crystallography, NMR and cryo-EM analysis. Its use is expanding among researchers, not only in structural biology but also in other research fields. Researchers are currently exploring the full potential of AlphaFold-generated protein models. Predicting disease severity caused by missense mutations is one such application. This article provides an overview of the 3D structural modeling of AlphaFold based on deep learning techniques and highlights the challenges in predicting the pathogenicity of missense mutations.

PubMed Disclaimer

References

    1. Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181:223–30. - PubMed - DOI
    1. Levinthal C. Are there pathways for protein folding? J Chim Phys. 1968;65:44–45. - DOI
    1. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–89. - PubMed - PMC - DOI
    1. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Applying and improving AlphaFold at CASP14. Proteins. 2021;89:1711–21. - PubMed - PMC - DOI
    1. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021;50:D439–D44. - PMC - DOI