Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan;31(1):42-53.
doi: 10.1038/s41594-023-01125-1. Epub 2024 Jan 4.

Auto-suppression of Tet dioxygenases protects the mouse oocyte genome from oxidative demethylation

Affiliations

Auto-suppression of Tet dioxygenases protects the mouse oocyte genome from oxidative demethylation

Xiao-Jie Zhang et al. Nat Struct Mol Biol. 2024 Jan.

Abstract

DNA cytosine methylation plays a vital role in repressing retrotransposons, and such derepression is linked with developmental failure, tumorigenesis and aging. DNA methylation patterns are formed by precisely regulated actions of DNA methylation writers (DNA methyltransferases) and erasers (TET, ten-eleven translocation dioxygenases). However, the mechanisms underlying target-specific oxidation of 5mC by TET dioxygenases remain largely unexplored. Here we show that a large low-complexity domain (LCD), located in the catalytic part of Tet enzymes, negatively regulates the dioxygenase activity. Recombinant Tet3 lacking LCD is shown to be hyperactive in converting 5mC into oxidized species in vitro. Endogenous expression of the hyperactive Tet3 mutant in mouse oocytes results in genome-wide 5mC oxidation. Notably, the occurrence of aberrant 5mC oxidation correlates with a consequent loss of the repressive histone mark H3K9me3 at ERVK retrotransposons. The erosion of both 5mC and H3K9me3 causes ERVK derepression along with upregulation of their neighboring genes, potentially leading to the impairment of oocyte development. These findings suggest that Tet dioxygenases use an intrinsic auto-regulatory mechanism to tightly regulate their enzymatic activity, thus achieving spatiotemporal specificity of methylome reprogramming, and highlight the importance of methylome integrity for development.

PubMed Disclaimer

References

    1. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019). - PubMed - DOI
    1. Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133 (2014). - PubMed - PMC - DOI
    1. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997). - PubMed - DOI
    1. Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001). - PubMed - DOI
    1. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009). - PubMed - DOI

LinkOut - more resources