Harnessing uncertainty in radiotherapy auto-segmentation quality assurance
- PMID: 38179210
- PMCID: PMC10765294
- DOI: 10.1016/j.phro.2023.100526
Harnessing uncertainty in radiotherapy auto-segmentation quality assurance
Conflict of interest statement
Clifton D. Fuller has received unrelated direct industry grant/in-kind support, honoraria, and travel funding from Elekta AB.
Figures

References
-
- Guo C, Pleiss G, Sun Y, Weinberger KQ. On calibration of modern neural networks. In: Precup D, Teh YW, editors. Proceedings of the 34th international conference on machine learning, vol. 70, PMLR; 06--11 Aug 2017, p. 1321–30.
-
- Holm A.N., Wright D., Augenstein I. Revisiting softmax for uncertainty approximation in text classification. Information. 2023;14:420.
-
- Pearce T, Brintrup A, Zhu J. Understanding softmax confidence and uncertainty. arXiv [csLG] 2021.
-
- Jaskari J., Sahlsten J., Damoulas T., Knoblauch J., Särkkä S., Kärkkäinen L., et al. Uncertainty-aware deep learning methods for robust diabetic retinopathy classification. IEEE Access. 2022;10:76669–76681.
Grants and funding
LinkOut - more resources
Full Text Sources