Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 1:246:118099.
doi: 10.1016/j.envres.2024.118099. Epub 2024 Jan 5.

Antioxidant diet/lifestyle could mitigate the adverse impacts of urinary polycyclic aromatic hydrocarbons on lung function

Affiliations

Antioxidant diet/lifestyle could mitigate the adverse impacts of urinary polycyclic aromatic hydrocarbons on lung function

Zhixiao Xu et al. Environ Res. .

Abstract

Background: Extant research has demonstrated a correlation between exposure to polycyclic aromatic hydrocarbons (PAHs) and impaired lung function. The maintenance of an antioxidant-rich diet/lifestyle positively benefits pulmonary health. However, the potential ameliorative impact of an antioxidant-based diet/lifestyle on PAH-induced detrimental effects remains unclear.

Methods: The study drew upon cross-sectional data encompassing 1615 participants derived from the National Health and Nutrition Examination Survey 2007 to 2012. To gauge the maintenance of an antioxidant-rich diet/lifestyle, we employed Oxidative Balance Score (OBS) that incorporates sixteen nutrients and four lifestyle factors. Lung function was evaluated using percent-predicted Forced Vital Capacity (FVC), Forced Expiratory Volume 1st Second (FEV1), FEV1/FVC, and fractional exhaled nitric oxide (FENO). Our analytical approach entailed the utilization of weighted linear models.

Results: Our analysis unveiled interaction effects between urinary monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs) and OBS concerning lung function. A one-unit increase in ∑OH-PAH (sum of eight OH-PAHs) was linked to a -0.75% reduction (95% CI: -1.28, -0.22) in FEV1/FVC. Individuals exhibiting low OBS displayed a marked decrease in FEV1/FVC (mean difference = -1.10%; 95% CI: -1.82, -0.39) for each unit increase in ∑OH-PAH, whereas no significant associations were discerned for those with medium or high OBS. Further stratification by gender yielded consistent results. The correlation between ∑OH-PAH and FENO proved statistically significant among participants with low OBS (P = 0.002) and medium OBS (P = 0.001), but non-significant for those with high OBS. Parallel findings emerged when examining percent-predicted FEV1 and FVC.

Conclusions: In conclusion, our study underscores the existence of statistically significant interactions between OH-PAHs and the maintenance of an antioxidant-rich diet and lifestyle concerning lung function. These findings underscore the pivotal role of maintaining an antioxidant-based diet and lifestyle in mitigating the adverse impacts of PAH exposure on lung function.

Keywords: Antioxidant; Diet; Lifestyle; Lung function; Oxidative balance score; Polycyclic aromatic hydrocarbon.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Substances

LinkOut - more resources