Benzopyran hydrazones with dual PPARα/γ or PPARα/δ agonism and an anti-inflammatory effect on human THP-1 macrophages
- PMID: 38185055
- DOI: 10.1016/j.ejmech.2024.116125
Benzopyran hydrazones with dual PPARα/γ or PPARα/δ agonism and an anti-inflammatory effect on human THP-1 macrophages
Abstract
Peroxisome proliferator-activated receptors (PPARs) play a major role in regulating inflammatory processes, and dual or pan-PPAR agonists with PPARγ partial activation have been recognised to be useful to manage both metabolic syndrome and metabolic dysfunction-associated fatty liver disease (MAFLD). Previous works have demonstrated the capacity of 2-prenylated benzopyrans as PPAR ligands. Herein, we have replaced the isoprenoid bond by hydrazone, a highly attractive functional group in medicinal chemistry. In an attempt to discover novel and safety PPAR activators, we efficiently prepared benzopyran hydrazone/hydrazine derivatives containing benzothiazole (series 1) or 5-chloro-3-(trifluoromethyl)-2-pyridine moiety (series 2) with a 3- or 7-carbon side chain at the 2-position of the benzopyran nucleus. Benzopyran hydrazones 4 and 5 showed dual hPPARα/γ agonism, while hydrazone 14 exerted dual hPPARα/δ agonism. These three hydrazones greatly attenuated inflammatory markers such as IL-6 and MCP-1 on the THP-1 macrophages via NF-κB activation. Therefore, we have discovered novel hits (4, 5 and 14), containing a hydrazone framework with dual PPARα/γ or PPARα/δ partial agonism, depending on the length of the side chain. Benzopyran hydrazones emerge as potential lead compounds which could be useful for treating metabolic diseases.
Keywords: Anti-inflammatory activity; Benzopryan hydrazones; Cytotoxicity; Molecular modelling; PPAR agonists; Synthesis.
Copyright © 2024 Elsevier Masson SAS. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous