Decoding Biomechanical Cues Based on DNA Sensors
- PMID: 38185740
- DOI: 10.1002/smll.202310330
Decoding Biomechanical Cues Based on DNA Sensors
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Keywords: DNA nanotechnology; mechanobiology; molecular tension sensor systems.
© 2024 Wiley‐VCH GmbH.
Similar articles
-
Unravelling molecular mechanobiology using DNA-based fluorogenic tension sensors.J Mater Chem B. 2024 Dec 18;13(1):37-53. doi: 10.1039/d4tb01858c. J Mater Chem B. 2024. PMID: 39564891 Review.
-
Peptide nucleic acid based tension sensor for cellular force imaging with strong DNase resistance.Biosens Bioelectron. 2020 Feb 15;150:111959. doi: 10.1016/j.bios.2019.111959. Epub 2019 Dec 10. Biosens Bioelectron. 2020. PMID: 31929090 Free PMC article.
-
Programmable Multivalent DNA-Origami Tension Probes for Reporting Cellular Traction Forces.Nano Lett. 2018 Aug 8;18(8):4803-4811. doi: 10.1021/acs.nanolett.8b01374. Epub 2018 Jul 5. Nano Lett. 2018. PMID: 29911385 Free PMC article.
-
Extending the Capabilities of Molecular Force Sensors via DNA Nanotechnology.Crit Rev Biomed Eng. 2020;48(1):1-16. doi: 10.1615/CritRevBiomedEng.2020033450. Crit Rev Biomed Eng. 2020. PMID: 32749116 Free PMC article. Review.
-
Investigating piconewton forces in cells by FRET-based molecular force microscopy.J Struct Biol. 2017 Jan;197(1):37-42. doi: 10.1016/j.jsb.2016.03.011. Epub 2016 Mar 12. J Struct Biol. 2017. PMID: 26980477 Review.
Cited by
-
In-Silico Analyses of Molecular Force Sensors for Mechanical Characterization of Biological Systems.bioRxiv [Preprint]. 2024 Jul 22:2024.07.17.603923. doi: 10.1101/2024.07.17.603923. bioRxiv. 2024. Update in: Biophys J. 2025 Mar 04;124(5):829-843. doi: 10.1016/j.bpj.2025.01.025. PMID: 39091752 Free PMC article. Updated. Preprint.
-
"Forcing" new interpretations of molecular tension sensor studies.Cell Rep Methods. 2024 Jul 15;4(7):100821. doi: 10.1016/j.crmeth.2024.100821. Cell Rep Methods. 2024. PMID: 39013362 Free PMC article.
-
In silico analyses of molecular force sensors for mechanical characterization of biological systems.Biophys J. 2025 Mar 4;124(5):829-843. doi: 10.1016/j.bpj.2025.01.025. Epub 2025 Feb 3. Biophys J. 2025. PMID: 39905731 Free PMC article.
References
-
- a) A. E. M. Beedle, S. Garcia‐Manyes, Nat. Rev. Mater. 2022, 8, 10;
-
- b) H. De Belly, E. K. Paluch, K. J. Chalut, Nat. Rev. Mol. Cell Biol. 2022, 23, 465;
-
- c) P. Romani, L. Valcarcel‐Jimenez, C. Frezza, S. Dupont, Nat. Rev. Mol. Cell Biol. 2020, 22, 22;
-
- d) A. Saraswathibhatla, D. Indana, O. Chaudhuri, Nat. Rev. Mol. Cell Biol. 2023, 24, 495;
-
- e) K. H. Vining, D. J. Mooney, Nat. Rev. Mol. Cell Biol. 2017, 18, 728.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources