Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan 5;14(3):1665-1669.
doi: 10.1039/d3ra07781k. eCollection 2024 Jan 3.

Construction of a conjugated covalent organic framework for iodine capture

Affiliations

Construction of a conjugated covalent organic framework for iodine capture

Chao Gao et al. RSC Adv. .

Abstract

Radioactive iodine in the nuclear field is considered very dangerous nuclear waste because of its chemical toxicity, high mobility and long radioactive half-life. Herein, a conjugated two-dimensional covalent organic framework, TPB-TMPD-COF, has been designed and synthesized for iodine capture. TPB-TMPD-COF has been well characterized by several techniques and showed long order structure and a large surface area (1090 m2 g-1). Moreover, TPB-TMPD-COF shows a high iodine capture value at 4.75 g g-1 under 350 K and normal pressure conditions, benefitting from the increased density of adsorption sites. By using multiple techniques, the iodine vapor adsorbed into the pores may readily generate the electron transfer species (I3- and I5-) due to the strong interactions between imine groups and iodine molecules, which contributes to the high iodine uptake for TPB-TMPD-COF. Our study will stimulate the design and synthesis of COFs as a solid-phase adsorbent for iodine uptake.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Synthesis of TPB-TMPD-COF.
Fig. 2
Fig. 2. Synthesis of TPB-TMPD-COF. (a) FT-IR spectra of TPB-CHO (black), TMPD (blue), and TPB-TMPD-COF (red); (b) 13C NMR spectra of TPB-TMPD-COF; (c and d) SEM image of TPB-TMPD-COF.
Fig. 3
Fig. 3. The experimental and Pawley refined PXRD patterns of TPB-TMPD-COF (a): experimental (black curve), Pawley refined (red curve), difference between the experimental and refined patterns (blue curve), and Bragg position from AA stacking with single-pore structure (green curve). Top view and side view of simulated structure for TPB-TMPD-COF (b and c).
Fig. 4
Fig. 4. N2 adsorption–desorption isotherm (a) and pore size distribution (b) of TPB-TMPD-COF; (c) thermogravimetric analysis of TPB-TMPD-COF; (d) PXRD patterns of TPB-TMPD-COF after treatment in different solvents for 24 hours.
Fig. 5
Fig. 5. (a) Uptake of iodine of TPB-TMPD-COF as a function of exposure time at 350 K and ambient pressure; (b) thermogravimetric analysis of TPB-TMPD-COF before (black curve) and after (red curve) iodine uptake; (c) Raman spectra of TPB-TMPD-COF before (black curve) and after (red curve) iodine uptake; (d) XPS I 3d for TPB-TMPD-COF after iodine uptake.

References

    1. Ewing R. C. Hippel F. N. V. Science. 2009;325:151. - PubMed
    2. Veliscek-Carolan J. J. Hazard. Mater. 2016;318:266. - PubMed
    1. Xiao K. Liu H. Li Y. Yang G. Wang Y. Yao H. Chem. Eng. J. 2020;382:122997.
    2. Li J. Li B. Shen N. Chen L. Guo Q. Chen L. He L. Dai X. Chai Z. Wang S. ACS Cent. Sci. 2021;7:1441. - PMC - PubMed
    3. Nandanwar S. U. Coldsnow K. Utgikar V. Sabharwall P. Aston D. E. Chem. Eng. J. 2016;306:369.
    4. Li B. Dong X. Wang H. Ma D. Tan K. Jensen S. Deibert B. J. Bulter J. Cure J. Shi Z. Thonhauser T. Chabal Y. J. Han Y. Li J. Nat. Commun. 2017;8:485. - PMC - PubMed
    1. Kurisingal J. F. Yun H. Hong C. S. J. Hazard. Mater. 2016;318:266. - PubMed
    2. Zhong Y. Mao Y. Shi S. Wan M. Ma C. Wang S. Chen C. Zhao D. Zhang N. ACS Appl. Mater. Interfaces. 2019;11:32251. - PubMed
    3. Mao Y. Wang Q. Yu L. Qian H. Deng S. Xiao W. Zhao D. Chen C. Inorg. Chem. 2020;59:8213. - PubMed
    1. Geng K.-Y. He T. Liu R.-Y. Dalapati S. Tan K. T. Li Z.-P. Tao S.-S. Gong Y.-F. Jiang Q.-H. Jiang D.-L. Chem. Rev. 2020;120:8814. - PubMed
    2. Lyle S. J. Waller P. J. Yaghi O. M. Trends Chem. 2019;1:172.
    3. Lohse M. S. Bein T. Adv. Funct. Mater. 2018:1705553.
    4. Jin Y. Hu Y. Zhang W. Nat. Rev. Chem. 2017;1:0056.
    5. Ding S. Y. Wang W. Chem. Soc. Rev. 2013;42:548. - PubMed
    1. Côté A. P. Benin A. I. Ockwig N. W. O'Keeffe M. Matzger A. J. Yaghi O. M. Science. 2005;310:1166. - PubMed