Quantification of mRNA in Lipid Nanoparticles Using Mass Spectrometry
- PMID: 38189247
- PMCID: PMC10809213
- DOI: 10.1021/acs.analchem.3c04406
Quantification of mRNA in Lipid Nanoparticles Using Mass Spectrometry
Abstract
Lipid nanoparticle-encapsulated mRNA (LNP-mRNA) holds great promise as a novel modality for treating a broad range of diseases. The ability to quantify mRNA accurately in therapeutic products helps to ensure consistency and safety. Here, we consider a central aspect of accuracy, measurement traceability, which establishes trueness in quantity. In this study, LNP-mRNA is measured in situ using a novel liquid chromatography-mass spectrometry (LC-MS) approach with traceable quantification. Previous works established that oligonucleotide quantification is possible through the accounting of an oligomer's fundamental nucleobases, with traceability established through common nucleobase calibrators. This sample preparation does not require mRNA extraction, detergents, or enzymes and can be achieved through direct acid hydrolysis of an LNP-mRNA product prior to an isotope dilution strategy. This results in an accurate quantitative analysis of mRNA, independent of time or place. Acid hydrolysis LC-MS is demonstrated to be amenable to measuring mRNA as both an active substance or a formulated mRNA drug product.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
Similar articles
-
An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for the quantification of aldosterone in human serum and plasma.Clin Chem Lab Med. 2023 Mar 24;61(11):1902-1916. doi: 10.1515/cclm-2022-0996. Print 2023 Oct 26. Clin Chem Lab Med. 2023. PMID: 36952682
-
Absolute Quantification of RNA or DNA Using Acid Hydrolysis and Mass Spectrometry.Anal Chem. 2019 Nov 19;91(22):14569-14576. doi: 10.1021/acs.analchem.9b03625. Epub 2019 Nov 1. Anal Chem. 2019. PMID: 31638773 Free PMC article.
-
An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure for the quantification of levetiracetam in human serum and plasma.Clin Chem Lab Med. 2023 Apr 4;61(11):1967-1977. doi: 10.1515/cclm-2022-1038. Print 2023 Oct 26. Clin Chem Lab Med. 2023. PMID: 37011038
-
Chemistry of Lipid Nanoparticles for RNA Delivery.Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1. Acc Chem Res. 2022. PMID: 34850635 Review.
-
Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy.Adv Mater. 2023 Dec;35(51):e2303261. doi: 10.1002/adma.202303261. Epub 2023 Nov 1. Adv Mater. 2023. PMID: 37196221 Review.
Cited by
-
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines.Pharmaceutics. 2025 Jul 30;17(8):992. doi: 10.3390/pharmaceutics17080992. Pharmaceutics. 2025. PMID: 40871015 Free PMC article. Review.
-
Current and Near-Future Technologies to Quantify Nanoparticle Therapeutic Loading Efficiency and Surface Coating Efficiency with Targeted Moieties.Bioengineering (Basel). 2025 Mar 31;12(4):362. doi: 10.3390/bioengineering12040362. Bioengineering (Basel). 2025. PMID: 40281721 Free PMC article. Review.
-
Electrophoretically Snagging Viral Genomes in Wormlike Micelle Networks Using Peptide Nucleic Acid Amphiphiles and dsDNA Oligomers.Biomacromolecules. 2024 Aug 12;25(8):4891-4897. doi: 10.1021/acs.biomac.4c00332. Epub 2024 Jul 17. Biomacromolecules. 2024. PMID: 39017713 Free PMC article.
-
Review on the bioanalysis of non-virus-based gene therapeutics.Bioanalysis. 2024 Dec-Dec;16(23-24):1279-1294. doi: 10.1080/17576180.2024.2437418. Epub 2024 Dec 14. Bioanalysis. 2024. PMID: 39673530 Review.
References
-
- Crank M. C.; Ruckwardt T. J.; Chen M.; Morabito K. M.; Phung E.; Costner P. J.; Holman L. A.; Hickman S. P.; Berkowitz N. M.; Gordon I. J.; Yamshchikov G. V.; Gaudinski M. R.; Kumar A.; Chang L. A.; Moin S. M.; Hill J. P.; DiPiazza A. T.; Schwartz R. M.; Kueltzo L.; Cooper J. W.; Chen P.; Stein J. A.; Carlton K.; Gall J. G.; Nason M. C.; Kwong P. D.; Chen G. L.; Mascola J. R.; McLellan J. S.; Ledgerwood J. E.; Graham B. S. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 2019, 365 (6452), 505–509. 10.1126/science.aav9033. - DOI - PubMed
-
- Polack F. P.; Thomas S. J.; Kitchin N.; Absalon J.; Gurtman A.; Lockhart S.; Perez J. L.; Pérez Marc G.; Moreira E. D.; Zerbini C.; Bailey R.; Swanson K. A.; Roychoudhury S.; Koury K.; Li P.; Kalina W. V.; Cooper D.; Frenck R. W. Jr.; Hammitt L. L.; Türeci Ö.; Nell H.; Schaefer A.; Ünal S.; Tresnan D. B.; Mather S.; Dormitzer P. R.; Şahin U.; Jansen K. U.; Gruber W. C. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J. Med. 2020, 383 (27), 2603–2615. 10.1056/NEJMoa2034577. - DOI - PMC - PubMed
-
- Medicine N. L. o. ClinicalTrials.gov.
-
- Whitley J.; Zwolinski C.; Denis C.; Maughan M.; Hayles L.; Clarke D.; Snare M.; Liao H.; Chiou S.; Marmura T.; Zoeller H.; Hudson B.; Peart J.; Johnson M.; Karlsson A.; Wang Y.; Nagle C.; Harris C.; Tonkin D.; Fraser S.; Capiz L.; Zeno C. L.; Meli Y.; Martik D.; Ozaki D. A.; Caparoni A.; Dickens J. E.; Weissman D.; Saunders K. O.; Haynes B. F.; Sempowski G. D.; Denny T. N.; Johnson M. R. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl Res. 2022, 242, 38–55. 10.1016/j.trsl.2021.11.009. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources