Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;108(1):64.
doi: 10.1007/s00253-023-12864-y. Epub 2024 Jan 8.

Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance

Affiliations

Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance

Emma Dutilloy et al. Appl Microbiol Biotechnol. 2024 Dec.

Abstract

Wheat and barley rank among the main crops cultivated on a global scale, providing the essential nutritional foundation for both humans and animals. Nevertheless, these crops are vulnerable to several fungal diseases, such as Septoria tritici blotch and net blotch, which significantly reduce yields by adversely affecting leaves and grain quality. To mitigate the effect of these diseases, chemical fungicides have proven to be genuinely effective; however, they impose a serious environmental burden. Currently, biocontrol agents have attracted attention as a sustainable alternative to fungicides, offering an eco-friendly option. The study aimed to assess the efficacy of Bacillus velezensis BE2 in reducing disease symptoms caused by Zymoseptoria tritici and Pyrenophora teres. This bacterium exhibited significant antagonistic effects in vitro by suppressing fungal development when pathogens and the beneficial strain were in direct confrontation. These findings were subsequently confirmed through microscopic analysis, which illustrated the strain's capacity to inhibit spore germination and mycelial growth in both pathogens. Additionally, the study analysed the cell-free supernatant of the bacterium using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry). The results revealed that strain BE2 produces, among other metabolites, different families of cyclic lipopeptides that may be involved in biocontrol. Furthermore, the beneficial effects of strain BE2 in planta were assessed by quantifying the fungal DNA content directly at the leaf level after bacterization, using two different application methods (foliar and drenching). The results indicated that applying the beneficial bacterium at the root level significantly reduced pathogens pressure. Finally, gene expression analysis of different markers showed that BE2 application induced a priming effect within the first hours after infection. KEY POINTS: • BE2 managed Z. tritici and P. teres by direct antagonism and induced systemic resistance. • Strain BE2 produced seven metabolite families, including three cyclic lipopeptides. • Application of strain BE2 at the root level triggered plant defense mechanisms.

Keywords: Bacillus velezensis BE2; Biocontrol; Gene expression; NRPS; Net blotch; Septoria.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Able AJ (2003) Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221:137–143. https://doi.org/10.1007/s00709-002-0064-1 - DOI - PubMed
    1. Adhikari TB, Balaji B, Breeden J, Goodwin SB (2007) Resistance of wheat to Mycosphaerella graminicola involves early and late peaks of gene expression. Physiol Mol Plant Pathol 71:55–68. https://doi.org/10.1016/j.pmpp.2007.10.004 - DOI
    1. Albdaiwi RN, Khyami-Horani H, Ayad JY, Alananbeh KM, Al-Sayaydeh R (2019) Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region. Front Microbiol 10:1639. https://doi.org/10.3389/fmicb.2019.01639 - DOI - PubMed - PMC
    1. Ali S, Mir ZA, Bhat JA, Tyagi A, Chandrashekar N, Yadav P, Rawat S, Sultana M, Grover A (2018) Isolation and characterization of systemic acquired resistance marker gene PR1 and its promoter from Brassica juncea. 3 Biotech 8:10. https://doi.org/10.1007/s13205-017-1027-8 - DOI - PubMed
    1. Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390. https://doi.org/10.1093/jxb/ern277 - DOI - PubMed

Supplementary concepts

LinkOut - more resources