Quantum control of flying doughnut terahertz pulses
- PMID: 38198544
- PMCID: PMC10780876
- DOI: 10.1126/sciadv.adl1803
Quantum control of flying doughnut terahertz pulses
Abstract
The ability to manipulate the multiple properties of light diversifies light-matter interaction and light-driven applications. Here, using quantum control, we introduce an approach that enables the amplitude, sign, and even configuration of the generated light fields to be manipulated in an all-optical manner. Following this approach, we demonstrate the generation of "flying doughnut" terahertz (THz) pulses. We show that the single-cycle THz pulse radiated from the dynamic ring current has an electric field structure that is azimuthally polarized and that the space- and time-resolved magnetic field has a strong, isolated longitudinal component. We apply the flying doughnut pulse for a spectroscopic measurement of the water vapor in ambient air. Pulses such as these will serve as unique probes for spectroscopy, imaging, telecommunications, and magnetic materials.
Figures




Similar articles
-
Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.Rev Sci Instrum. 2016 Sep;87(9):095101. doi: 10.1063/1.4961494. Rev Sci Instrum. 2016. PMID: 27782602
-
Generation of 13.9-mJ Terahertz Radiation from Lithium Niobate Materials.Adv Mater. 2023 Jun;35(23):e2208947. doi: 10.1002/adma.202208947. Epub 2023 Apr 27. Adv Mater. 2023. PMID: 36932897
-
Terahertz-based retrieval of the spectral phase and amplitude of ultrashort laser pulses.Opt Lett. 2018 Feb 15;43(4):783-786. doi: 10.1364/OL.43.000783. Opt Lett. 2018. PMID: 29443993
-
Spintronic terahertz emission with manipulated polarization (STEMP).Front Optoelectron. 2022 Apr 21;15(1):12. doi: 10.1007/s12200-022-00011-w. Front Optoelectron. 2022. PMID: 36637604 Free PMC article. Review.
-
Intense terahertz radiation: generation and application.Front Optoelectron. 2021 Mar;14(1):4-36. doi: 10.1007/s12200-020-1052-9. Epub 2020 Dec 23. Front Optoelectron. 2021. PMID: 36637780 Free PMC article. Review.
Cited by
-
Hybrid electromagnetic toroidal vortices.Sci Adv. 2025 Feb 21;11(8):eads4797. doi: 10.1126/sciadv.ads4797. Epub 2025 Feb 21. Sci Adv. 2025. PMID: 39982996 Free PMC article.
-
Orbital angular momentum control of strong-field ionization in atoms and molecules.Nat Commun. 2025 Mar 12;16(1):2467. doi: 10.1038/s41467-025-57618-8. Nat Commun. 2025. PMID: 40075101 Free PMC article.
-
Double-helix singularity and vortex-antivortex annihilation in space-time helical pulses.Nanophotonics. 2024 Oct 31;14(6):741-747. doi: 10.1515/nanoph-2024-0480. eCollection 2025 Apr. Nanophotonics. 2024. PMID: 40182793 Free PMC article.
References
-
- Rubinsztein-Dunlop H., Forbes A., Berry M. V., Dennis M. R., Andrews D. L., Mansuripur M., Denz C., Alpmann C., Banzer P., Bauer T., Karimi E., Marrucci L., Padgett M., Ritsch-Marte M., Litchinitser N. M., Bigelow N. P., Rosales-Guzmán C., Belmonte A., Torres J. P., Neely T. W., Baker M., Gordon R., Stilgoe A. B., Romero J., White A. G., Fickler R., Willner A. E., Xie G., McMorran B., Weiner A. M., Roadmap on structured light. J. Opt. 19, 013001 (2016).
-
- Forbes A., Structured light: Tailored for purpose. Opt. Photonics News 31, 24–31 (2020).
-
- Lu L., Joannopoulos J. D., Soljačić M., Topological photonics. Nat. Photonics 8, 821–829 (2014).
-
- Dai Y., Zhou Z., Ghosh A., Mong R. S. K., Kubo A., Huang C. B., Petek H., Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020). - PubMed
LinkOut - more resources
Full Text Sources