Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan;625(7996):728-734.
doi: 10.1038/s41586-023-06820-z. Epub 2024 Jan 10.

Consistent patterns of common species across tropical tree communities

Declan L M Cooper  1   2 Simon L Lewis  3   4 Martin J P Sullivan  5   6 Paulo I Prado  7 Hans Ter Steege  8   9 Nicolas Barbier  10   11 Ferry Slik  12 Bonaventure Sonké  11   13 Corneille E N Ewango  14 Stephen Adu-Bredu  15 Kofi Affum-Baffoe  16 Daniel P P de Aguiar  17   18 Manuel Augusto Ahuite Reategui  19 Shin-Ichiro Aiba  20 Bianca Weiss Albuquerque  21 Francisca Dionízia de Almeida Matos  22 Alfonso Alonso  23 Christian A Amani  24   25 Dário Dantas do Amaral  26 Iêda Leão do Amaral  22 Ana Andrade  27 Ires Paula de Andrade Miranda  22 Ilondea B Angoboy  28 Alejandro Araujo-Murakami  29 Nicolás Castaño Arboleda  30 Luzmila Arroyo  29 Peter Ashton  31 Gerardo A Aymard C  32 Cláudia Baider  33   34 Timothy R Baker  5 Michael Philippe Bessike Balinga  35 Henrik Balslev  36 Lindsay F Banin  37 Olaf S Bánki  8 Chris Baraloto  38 Edelcilio Marques Barbosa  22 Flávia Rodrigues Barbosa  39 Jos Barlow  40 Jean-Francois Bastin  41 Hans Beeckman  42 Serge Begne  5   11   13 Natacha Nssi Bengone  43 Erika Berenguer  40   44 Nicholas Berry  45 Robert Bitariho  46 Pascal Boeckx  47 Jan Bogaert  48 Bernard Bonyoma  49 Patrick Boundja  24   50 Nils Bourland  42   51   52   53 Faustin Boyemba Bosela  54 Fabian Brambach  55 Roel Brienen  5 David F R P Burslem  56 José Luís Camargo  27 Wegliane Campelo  57 Angela Cano  58   59 Sasha Cárdenas  58 Dairon Cárdenas López  30 Rainiellen de Sá Carpanedo  39 Yrma Andreina Carrero Márquez  60 Fernanda Antunes Carvalho  61   62 Luisa Fernanda Casas  58 Hernán Castellanos  63 Carolina V Castilho  64 Carlos Cerón  65 Colin A Chapman  66   67   68 Jerome Chave  69 Phourin Chhang  70 Wanlop Chutipong  71 George B Chuyong  72 Bruno Barçante Ladvocat Cintra  73 Connie J Clark  74 Fernanda Coelho de Souza  61   75   76 James A Comiskey  77   78 David A Coomes  79 Fernando Cornejo Valverde  80 Diego F Correa  58   81 Flávia R C Costa  61 Janaina Barbosa Pedrosa Costa  82 Pierre Couteron  10   11 Heike Culmsee  83 Aida Cuni-Sanchez  84   85 Francisco Dallmeier  23 Gabriel Damasco  86 Gilles Dauby  10   11 Nállarett Dávila  87 Hilda Paulette Dávila Doza  88 Jose Don T De Alban  89   90 Rafael L de Assis  91 Charles De Canniere  92 Thales De Haulleville  42 Marcelo de Jesus Veiga Carim  93 Layon O Demarchi  21 Kyle G Dexter  94   95 Anthony Di Fiore  96   97 Hazimah Haji Mohammad Din  98 Mathias I Disney  99 Brice Yannick Djiofack  42   100   101 Marie-Noël K Djuikouo  11   72 Tran Van Do  102 Jean-Louis Doucet  103 Freddie C Draper  104 Vincent Droissart  10   11 Joost F Duivenvoorden  105 Julien Engel  10   106 Vittoria Estienne  50 William Farfan-Rios  107   108 Sophie Fauset  109 Kenneth J Feeley  110   111 Yuri Oliveira Feitosa  112 Ted R Feldpausch  75   113 Cid Ferreira  22 Joice Ferreira  114 Leandro Valle Ferreira  26 Christine D Fletcher  115 Bernardo Monteiro Flores  116 Alusine Fofanah  117 Ernest G Foli  15 Émile Fonty  118   119 Gabriella M Fredriksson  120 Alfredo Fuentes  108   121 David Galbraith  5 George Pepe Gallardo Gonzales  88 Karina Garcia-Cabrera  122 Roosevelt García-Villacorta  123   124 Vitor H F Gomes  125   126 Ricardo Zárate Gómez  127 Therany Gonzales  128 Rogerio Gribel  22 Marcelino Carneiro Guedes  82 Juan Ernesto Guevara  129   130 Khalid Rehman Hakeem  131 Jefferson S Hall  132 Keith C Hamer  133 Alan C Hamilton  134 David J Harris  95 Rhett D Harrison  135 Terese B Hart  136   137 Andy Hector  138 Terry W Henkel  139 John Herbohn  140 Mireille B N Hockemba  50 Bruce Hoffman  141 Milena Holmgren  142 Euridice N Honorio Coronado  143   144 Isau Huamantupa-Chuquimaco  145 Wannes Hubau  5   42   146 Nobuo Imai  147 Mariana Victória Irume  22 Patrick A Jansen  148   149 Kathryn J Jeffery  150 Eliana M Jimenez  151 Tommaso Jucker  152 André Braga Junqueira  153 Michelle Kalamandeen  154 Narcisse G Kamdem  11   13 Kuswata Kartawinata  155 Emmanuel Kasongo Yakusu  42   101   156 John M Katembo  54 Elizabeth Kearsley  157 David Kenfack  132 Michael Kessler  158 Thiri Toe Khaing  159   160 Timothy J Killeen  161 Kanehiro Kitayama  162 Bente Klitgaard  163 Nicolas Labrière  69 Yves Laumonier  164 Susan G W Laurance  165 William F Laurance  165 Félix Laurent  42   100   101 Tinh Cong Le  166 Trai Trong Le  166 Miguel E Leal  167 Evlyn Márcia Leão de Moraes Novo  168 Aurora Levesley  5 Moses B Libalah  11   13   169 Juan Carlos Licona  170 Diógenes de Andrade Lima Filho  22 Jeremy A Lindsell  171   172 Aline Lopes  173 Maria Aparecida Lopes  174 Jon C Lovett  5   175 Richard Lowe  176 José Rafael Lozada  177 Xinghui Lu  178 Nestor K Luambua  42   100   179   180 Bruno Garcia Luize  87 Paul Maas  8 José Leonardo Lima Magalhães  181   182 William E Magnusson  61 Ni Putu Diana Mahayani  183 Jean-Remy Makana  184 Yadvinder Malhi  44 Lorena Maniguaje Rincón  22 Asyraf Mansor  185   186 Angelo Gilberto Manzatto  187 Beatriz S Marimon  188 Ben Hur Marimon-Junior  188 Andrew R Marshall  84   189   190 Maria Pires Martins  22 Faustin M Mbayu  191 Marcelo Brilhante de Medeiros  192 Italo Mesones  193 Faizah Metali  194 Vianet Mihindou  195   196 Jerome Millet  197 William Milliken  198 Hugo F Mogollón  199 Jean-François Molino  10   11 Mohd Nizam Mohd Said  200 Abel Monteagudo Mendoza  191   201 Juan Carlos Montero  18   170 Sam Moore  44 Bonifacio Mostacedo  202 Linder Felipe Mozombite Pinto  88 Sharif Ahmed Mukul  140   203 Pantaleo K T Munishi  204 Hidetoshi Nagamasu  205 Henrique Eduardo Mendonça Nascimento  22 Marcelo Trindade Nascimento  206 David Neill  207 Reuben Nilus  208 Janaína Costa Noronha  39 Laurent Nsenga  42 Percy Núñez Vargas  201 Lucas Ojo  209 Alexandre A Oliveira  7 Edmar Almeida de Oliveira  188 Fidèle Evouna Ondo  195 Walter Palacios Cuenca  210 Susamar Pansini  211 Marcelo Petratti Pansonato  22   34 Marcos Ríos Paredes  88 Ekananda Paudel  212 Daniela Pauletto  213 Richard G Pearson  214 José Luis Marcelo Pena  215 R Toby Pennington  95   113 Carlos A Peres  216 Andrea Permana  217 Pascal Petronelli  218 Maria Cristina Peñuela Mora  219 Juan Fernando Phillips  220 Oliver L Phillips  5 Georgia Pickavance  5 Maria Teresa Fernandez Piedade  21 Nigel C A Pitman  221 Pierre Ploton  10   11 Andreas Popelier  42   101   156 John R Poulsen  74   222 Adriana Prieto  223 Richard B Primack  224 Hari Priyadi  225 Lan Qie  5   226 Adriano Costa Quaresma  21   227 Helder Lima de Queiroz  228 Hirma Ramirez-Angulo  229 José Ferreira Ramos  22 Neidiane Farias Costa Reis  211 Jan Reitsma  230 Juan David Cardenas Revilla  22 Terhi Riutta  44   231 Gonzalo Rivas-Torres  97   232 Iyan Robiansyah  233   234 Maira Rocha  21 Domingos de Jesus Rodrigues  39 M Elizabeth Rodriguez-Ronderos  89   235 Francesco Rovero  236   237 Andes H Rozak  238 Agustín Rudas  223 Ervan Rutishauser  239 Daniel Sabatier  10   11 Le Bienfaiteur Sagang  11   13   240 Adeilza Felipe Sampaio  211 Ismayadi Samsoedin  241 Manichanh Satdichanh  212 Juliana Schietti  22 Jochen Schöngart  21 Veridiana Vizoni Scudeller  242 Naret Seuaturien  243 Douglas Sheil  244 Rodrigo Sierra  245 Miles R Silman  122 Thiago Sanna Freire Silva  246 José Renan da Silva Guimarães  247 Murielle Simo-Droissart  11   13 Marcelo Fragomeni Simon  192 Plinio Sist  248 Thaiane R Sousa  249 Emanuelle de Sousa Farias  250   251 Luiz de Souza Coelho  22 Dominick V Spracklen  252 Suzanne M Stas  252 Robert Steinmetz  243 Pablo R Stevenson  58 Juliana Stropp  253 Rahayu S Sukri  98 Terry C H Sunderland  24   254 Eizi Suzuki  255 Michael D Swaine  256 Jianwei Tang  257 James Taplin  258 David M Taylor  235 J Sebastián Tello  259 John Terborgh  260   261 Nicolas Texier  262 Ida Theilade  263 Duncan W Thomas  264 Raquel Thomas  265 Sean C Thomas  266 Milton Tirado  245 Benjamin Toirambe  42   267 José Julio de Toledo  57 Kyle W Tomlinson  159   268 Armando Torres-Lezama  229 Hieu Dang Tran  166 John Tshibamba Mukendi  42   156   269 Roven D Tumaneng  90   270 Maria Natalia Umaña  271 Peter M Umunay  272   273 Ligia Estela Urrego Giraldo  274 Elvis H Valderrama Sandoval  275   276 Luis Valenzuela Gamarra  191 Tinde R Van Andel  8   277 Martin van de Bult  278 Jaqueline van de Pol  279 Geertje van der Heijden  280 Rodolfo Vasquez  191 César I A Vela  281 Eduardo Martins Venticinque  282 Hans Verbeeck  283 Rizza Karen A Veridiano  90   284 Alberto Vicentini  61 Ima Célia Guimarães Vieira  26 Emilio Vilanova Torre  229   272 Daniel Villarroel  29   285 Boris Eduardo Villa Zegarra  286 Jason Vleminckx  38   287 Patricio von Hildebrand  288 Vincent Antoine Vos  289 Corine Vriesendorp  221 Edward L Webb  290   291 Lee J T White  43   150   292 Serge Wich  293 Florian Wittmann  18   227 Roderick Zagt  294 Runguo Zang  295 Charles Eugene Zartman  22 Lise Zemagho  11   13 Egleé L Zent  296 Stanford Zent  296
Affiliations

Consistent patterns of common species across tropical tree communities

Declan L M Cooper et al. Nature. 2024 Jan.

Abstract

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Location of the 1,568 plots, tropical forest regions, and tropical forest biome extent used in the study.
Dots show the location of the plots analysed, coloured by continental region. Dark green shows the Amazonia, Africa and Southeast Asia regions that we extrapolate to. Light green shows ‘tropical and subtropical moist broadleaf forests’, which we extrapolate to as the closed canopy tropical forest biome.
Fig. 2
Fig. 2. Rarefaction curves showing the effect of increasing sample size on the number of hyperdominants, total species, hyperdominant percentage and fitted values of Fisher’s α in tropical tree communities.
ad, The effect of increasing sample size on the number of hyperdominants (a), total species (b), hyperdominant percentage (c) and fitted values of Fisher’s α (d) in tropical Africa (magenta), Amazonia (cyan), Southeast Asia (blue). Rarefied data (mean values across iterations of subsamples) are shown as points joined by lines for clarity, shaded areas represent 95% confidence intervals (derived via the s.d. across iterations of subsamples taken with replacement at each sampling point). Note that resampling for rarefaction was by subsampling of plots, but curves are re-plotted on an x axis of number of stems.
Fig. 3
Fig. 3. The minimum percentage of total species required to account for given dominance thresholds of the total number of stems when this varies from 10% to 90%.
Circles show results as rarefied to the size of the Southeast Asia dataset (mean values across iterations of subsamples with 77,587 stems). Diamonds show the extrapolated results at the scale of the regions. Estimated rarefaction confidence intervals are derived from the s.d. across iterations of subsamples taken with replacement at 77,587 stems.
Extended Data Fig. 1
Extended Data Fig. 1. Impact of plot size on rarefaction curves of total species (a) and number of hyperdominants (b) in the Asia data.
Red points represent the full Southeast Asia data (mean values across iterations of subsamples), including all plot sizes (mean plot size: 0.877 ha, median plot size: 0.5 ha); Purple points represent the Southeast Asia data restricted to plots ≥0.9 ha (mean plot size: 1.59 ha, median plot size: 1 ha).
Extended Data Fig. 2
Extended Data Fig. 2. Impact of spatial clustering of plots on rarefaction curves of hyperdominant percentage (first row) and Fisher’s Alpha (second row) in the Amazonia data.
Purple points and confidence intervals represent the full data; black points and confidence intervals represent a subset of the data in which one plot is sampled from each spatial cluster of plots; other coloured points represent subsets of the data in which 2,3,4,…,10 plots (or the total number of plots in the cluster) are sampled from each spatial cluster of plots. Points give the mean values across iterations of subsamples. Confidence intervals are derived via the standard deviation across iterations of subsamples taken with replacement at each sampling point. Note that although resampling for rarefaction was done by subsampling tree inventory plots, the curves are re-plotted with an x-axis of number of stems.
Extended Data Fig. 3
Extended Data Fig. 3. Complete rarefaction curves showing the effect of increasing sampling on the number of hyperdominants (a), total species (b), hyperdominant percentage (c), and fitted values of Fisher’s α (d).
In tropical Africa (magenta), Amazonia (cyan), Southeast Asia (blue). Markers represent rarefied points (mean values across iterations of subsamples); shaded areas represent confidence intervals (CIs). Confidence intervals are derived via the standard deviation across iterations of subsamples taken with replacement at each sampling point. Note that although resampling for rarefaction was done by subsampling tree inventory plots, the curves are re-plotted with an x-axis of number of stems.
Extended Data Fig. 4
Extended Data Fig. 4. Preston plots (top row) and rank abundance distributions (bottom row) showing the empirical species abundance distributions for Africa (left) Amazonia (middle) and Southeast Asia (right) with log series fits overlaid.
Histogram bars display the empirical species abundance distributions as Preston plots (top row); black markers show the empirical species abundance distributions as rank abundance distributions (bottom row); overlaid points and lines show log series fits to empirical species abundance distributions in Africa (magenta), Amazonia (cyan), and Southeast Asia (blue).
Extended Data Fig. 5
Extended Data Fig. 5. Bias correction of estimates of species richness (first column), number of hyperdominants (second column), percentage hyperdominance (third column) for the Amazonia (first row), Africa (second row) and Southeast Asia (third row) datasets.
X-axes show estimated values derived from samples of the simulated communities taken with conspecific aggregation, Y-axes show true values of the simulated communities. Points show estimated true values for each of the 250 simulated communities. 1:1 equivalence shown by straight line in each plot. For number of hyperdominants and total species plots, simulated communities containing 100 to 25,000 species in Amazonia and Southeast Asia, 100 to 10,000 species in Africa are shown. For percentage hyperdominance, simulated communities containing 10,000 to 25,000 species in Amazonia and Southeast Asia, 2,000 to 10,000 species in Africa are shown.

Similar articles

  • Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.
    Fricker GA, Wolf JA, Saatchi SS, Gillespie TW. Fricker GA, et al. Ecol Appl. 2015 Oct;25(7):1776-89. doi: 10.1890/14-1593.1. Ecol Appl. 2015. PMID: 26591445
  • An estimate of the number of tropical tree species.
    Slik JW, Arroyo-Rodríguez V, Aiba S, Alvarez-Loayza P, Alves LF, Ashton P, Balvanera P, Bastian ML, Bellingham PJ, van den Berg E, Bernacci L, da Conceição Bispo P, Blanc L, Böhning-Gaese K, Boeckx P, Bongers F, Boyle B, Bradford M, Brearley FQ, Breuer-Ndoundou Hockemba M, Bunyavejchewin S, Calderado Leal Matos D, Castillo-Santiago M, Catharino EL, Chai SL, Chen Y, Colwell RK, Chazdon RL, Clark C, Clark DB, Clark DA, Culmsee H, Damas K, Dattaraja HS, Dauby G, Davidar P, DeWalt SJ, Doucet JL, Duque A, Durigan G, Eichhorn KA, Eisenlohr PV, Eler E, Ewango C, Farwig N, Feeley KJ, Ferreira L, Field R, de Oliveira Filho AT, Fletcher C, Forshed O, Franco G, Fredriksson G, Gillespie T, Gillet JF, Amarnath G, Griffith DM, Grogan J, Gunatilleke N, Harris D, Harrison R, Hector A, Homeier J, Imai N, Itoh A, Jansen PA, Joly CA, de Jong BH, Kartawinata K, Kearsley E, Kelly DL, Kenfack D, Kessler M, Kitayama K, Kooyman R, Larney E, Laumonier Y, Laurance S, Laurance WF, Lawes MJ, Amaral IL, Letcher SG, Lindsell J, Lu X, Mansor A, Marjokorpi A, Martin EH, Meilby H, Melo FP, Metcalfe DJ, Medjibe VP, Metzger JP, Millet J, Mohandass D, Montero JC, de Morisson Valeriano M, Mugerwa B, Nagamasu H, Nilus… See abstract for full author list ➔ Slik JW, et al. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7472-7. doi: 10.1073/pnas.1423147112. Epub 2015 Jun 1. Proc Natl Acad Sci U S A. 2015. PMID: 26034279 Free PMC article.
  • Canopy functional trait variation across Earth's tropical forests.
    Aguirre-Gutiérrez J, Rifai SW, Deng X, Ter Steege H, Thomson E, Corral-Rivas JJ, Guimaraes AF, Muller S, Klipel J, Fauset S, Resende AF, Wallin G, Joly CA, Abernethy K, Adu-Bredu S, Alexandre Silva C, de Oliveira EA, Almeida DRA, Alvarez-Davila E, Asner GP, Baker TR, Benchimol M, Bentley LP, Berenguer E, Blanc L, Bonal D, Bordin K, Borges de Lima R, Both S, Cabezas Duarte J, Cardoso D, de Lima HC, Cavalheiro L, Cernusak LA, Dos Santos Prestes NCC, da Silva Zanzini AC, da Silva RJ, Dos Santos Alves da Silva R, de Andrade Iguatemy M, De Sousa Oliveira TC, Dechant B, Derroire G, Dexter KG, Rodrigues DJ, Espírito-Santo M, Silva LF, Domingues TF, Ferreira J, Simon MF, Girardin CAJ, Hérault B, Jeffery KJ, Kalpuzha Ashtamoorthy S, Kavidapadinjattathil Sivadasan A, Klitgaard B, Laurance WF, Dan ML, Magnusson WE, Campos-Filho EM, Manoel Dos Santos R, Manzatto AG, Silveira M, Marimon-Junior BH, Martin RE, Vieira DLM, Metzker T, Milliken W, Moonlight P, Moraes de Seixas MM, Morandi PS, Muscarella R, Nava-Miranda MG, Nyirambangutse B, Silva JO, Oliveras Menor I, Francisco Pena Rodrigues PJ, Pereira de Oliveira C, Pereira Zanzini L, Peres CA, Punjayil V, Quesada CA, Réjou-Méchain M, Riutta T, … See abstract for full author list ➔ Aguirre-Gutiérrez J, et al. Nature. 2025 May;641(8061):129-136. doi: 10.1038/s41586-025-08663-2. Epub 2025 Mar 5. Nature. 2025. PMID: 40044867 Free PMC article.
  • Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide.
    Grubb PJ, Bellingham PJ, Kohyama TS, Piper FI, Valido A. Grubb PJ, et al. Biol Rev Camb Philos Soc. 2013 Aug;88(3):701-44. doi: 10.1111/brv.12029. Epub 2013 Mar 19. Biol Rev Camb Philos Soc. 2013. PMID: 23506298 Free PMC article. Review.
  • Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation.
    Rosa CA, Lachance MA, Limtong S, Santos ARO, Landell MF, Gombert AK, Morais PB, Sampaio JP, Gonçalves C, Gonçalves P, Góes-Neto A, Santa-Brígida R, Martins MB, Janzen DH, Hallwachs W. Rosa CA, et al. Yeast. 2023 Nov;40(11):511-539. doi: 10.1002/yea.3903. Epub 2023 Nov 3. Yeast. 2023. PMID: 37921426 Review.

Cited by

References

    1. Lewis SL, et al. Above-ground biomass and structure of 260 African tropical forests. Phil. Trans. R. Soc. B. 2013;368:20120295. doi: 10.1098/rstb.2012.0295. - DOI - PMC - PubMed
    1. Rovero F, Ahumada J. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: an early warning system for tropical rain forests. Sci. Total Environ. 2017;574:914–923. doi: 10.1016/j.scitotenv.2016.09.146. - DOI - PubMed
    1. Anderson‐Teixeira KJ, et al. CTFS–Forest GEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 2015;21:528–549. doi: 10.1111/gcb.12712. - DOI - PubMed
    1. Slik JWF, et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA. 2018;115:1837–1842. doi: 10.1073/pnas.1714977115. - DOI - PMC - PubMed
    1. Qie L, et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 2017;8:1966. doi: 10.1038/s41467-017-01997-0. - DOI - PMC - PubMed