Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Nov 5;192(1):17-26.
doi: 10.1016/0022-2836(86)90460-2.

Linking-number changes in the DNA substrate during Cre-mediated loxP site-specific recombination

Linking-number changes in the DNA substrate during Cre-mediated loxP site-specific recombination

K Abremski et al. J Mol Biol. .

Abstract

We have examined the linking-number changes that occur during phage P1 Cre-mediated recombination in vitro between two loxP sites. Such recombination reactions can be divided into three types: intramolecular inversion, in which recombination occurs between two loxP sites in opposite orientations on the same DNA substrate; intramolecular excision, where recombination occurs between two loxP sites that are in the same orientation on the DNA substrate; and intermolecular recombination, which occurs between two loxP sites on separate DNA molecules. Our results indicate that inversion changes the linking number of the substrate DNA by two topological turns. With a negatively supercoiled substrate, the product is changed by +2 turns. A relaxed substrate yields products that have been changed by either +2 or -2 turns. For intermolecular reactions, the sum of the linking numbers of each of the two starting circles is equal to the linking number of the dimer circle generated by recombination, and no change occurs in linking number. For intramolecular excision reactions, the data are most consistent, with no change in linking number during recombination. These results are discussed in terms of models for alignment and synapsis of the recombining sites and the mechanism of strand exchange.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources