Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer
- PMID: 38203467
- PMCID: PMC10779099
- DOI: 10.3390/ijms25010296
Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer
Abstract
Hyperthermia has the potential to damage cancerous tissue by increasing the body temperature. However, targeting cancer cells whilst protecting the surrounding tissues is often challenging, especially when implemented in clinical practice. In this direction, there are data showing that the combination of nanotechnology and hyperthermia offers more successful penetration of nanoparticles in the tumor environment, thus allowing targeted hyperthermia in the region of interest. At the same time, unlike radiotherapy, the use of non-ionizing radiation makes hyperthermia an attractive therapeutic option. This review summarizes the existing literature regarding the use of hyperthermia and nanoparticles in cancer, with a focus on nanoparticle-induced cytotoxicity mechanisms.
Keywords: cancer; cytotoxicity mechanisms; hyperthermia; nanoparticles.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
Similar articles
-
Hyperthermia using nanoparticles--Promises and pitfalls.Int J Hyperthermia. 2016;32(1):76-88. doi: 10.3109/02656736.2015.1120889. Epub 2016 Jan 12. Int J Hyperthermia. 2016. PMID: 26757879 Free PMC article. Review.
-
Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer.Life Sci. 2021 Mar 15;269:119020. doi: 10.1016/j.lfs.2021.119020. Epub 2021 Jan 12. Life Sci. 2021. PMID: 33450258 Review.
-
Targeted hyperthermia using metal nanoparticles.Adv Drug Deliv Rev. 2010 Mar 8;62(3):339-45. doi: 10.1016/j.addr.2009.11.006. Epub 2009 Nov 10. Adv Drug Deliv Rev. 2010. PMID: 19909777 Free PMC article. Review.
-
Numerical simulation of the effect of necrosis area in systemic delivery of magnetic nanoparticles in hyperthermia cancer treatment.J Therm Biol. 2020 Dec;94:102742. doi: 10.1016/j.jtherbio.2020.102742. Epub 2020 Oct 7. J Therm Biol. 2020. PMID: 33292983
-
A review on hyperthermia via nanoparticle-mediated therapy.Bull Cancer. 2017 May;104(5):452-461. doi: 10.1016/j.bulcan.2017.02.003. Epub 2017 Apr 3. Bull Cancer. 2017. PMID: 28385267 Review.
Cited by
-
Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management.RSC Adv. 2024 Oct 23;14(46):33681-33740. doi: 10.1039/d4ra05732e. eCollection 2024 Oct 23. RSC Adv. 2024. PMID: 39450067 Free PMC article. Review.
-
Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology.Discov Nano. 2025 Apr 24;20(1):70. doi: 10.1186/s11671-025-04248-0. Discov Nano. 2025. PMID: 40272665 Free PMC article. Review.
-
Heating Induced Nanoparticle Migration and Enhanced Delivery in Tumor Treatment Using Nanotechnology.Bioengineering (Basel). 2024 Sep 7;11(9):900. doi: 10.3390/bioengineering11090900. Bioengineering (Basel). 2024. PMID: 39329642 Free PMC article. Review.
-
Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials.RSC Adv. 2024 Dec 12;14(53):39297-39324. doi: 10.1039/d4ra06992g. eCollection 2024 Dec 10. RSC Adv. 2024. PMID: 39670162 Free PMC article. Review.
-
Combination Treatment with Liposomal Doxorubicin and Inductive Moderate Hyperthermia for Sarcoma Saos-2 Cells.Pharmaceuticals (Basel). 2024 Jan 19;17(1):133. doi: 10.3390/ph17010133. Pharmaceuticals (Basel). 2024. PMID: 38276006 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical