Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr:659:767-775.
doi: 10.1016/j.jcis.2024.01.026. Epub 2024 Jan 9.

The electronic structure of the active center of Co3Se4 electrocatalyst was adjusted by Te doping for efficient oxygen evolution

Affiliations

The electronic structure of the active center of Co3Se4 electrocatalyst was adjusted by Te doping for efficient oxygen evolution

Hao Wang et al. J Colloid Interface Sci. 2024 Apr.

Abstract

In order to enhance the energy efficiency of water electrolysis, it is imperative to devise electrocatalysts for oxygen evolution reaction that are both non-precious metal-based and highly efficient. Efficient catalyst design is generally based on electronic structural engineering. Considering the electronegativity disparity between selenium (Se) and tellurium (Te), the tunable bandgaps, and the conductive metallic nature of Te. We designed a material wherein Te atoms are uniformly doped onto the surface of Cobalt tetra selenide (Co3Se4) nanorods, leading to the synthesis of a defect-rich material. Experimental results demonstrate that Te doping in Co3Se4 increases active sites and optimizes the electronic structure of Co cations, enhancing the design of multi-defect structures. This promotes the generation of the Co(oxy) hydroxide (CoOOH) active phase, enhancing catalytic activity by maximizing the binding strength between Co sites and oxygenated intermediates. Te-Co3Se4 nanorods exhibit good catalytic activity for oxygen evolution reactions, with an overpotential of 269 mV at a driving current density of 50 mA cm-2 and excellent stability in alkaline media (over 100 h). This discovery indicates the feasibility of strategically combining various imperfect structures, thereby unlocking the latent potential of diverse catalysts in electrocatalytic reactions.

Keywords: Electronic structure; Interface engineering; Oxygen evolution reaction; Te doping.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources