Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan;89(1):212-224.
doi: 10.2166/wst.2023.408.

Efficient degradation of antibiotic wastewater by biochar derived from water hyacinth stems via periodate activation: pyridinic N and carbon structures improved the electron transfer process

Affiliations

Efficient degradation of antibiotic wastewater by biochar derived from water hyacinth stems via periodate activation: pyridinic N and carbon structures improved the electron transfer process

Wanqing Duan et al. Water Sci Technol. 2024 Jan.

Abstract

Biochar-activated periodate (PI) is a promising technology toward antibiotic wastewater purification. However, the mechanism of pyrolysis temperature on PI activation efficiency by biochar has not yet been revealed. Herein, this work selected water hyacinth stems as raw materials to prepare biochar with different pyrolysis temperatures (400, 500, 600, and 700 °C), and applied it to degrade tetracycline (TC) wastewater through PI activation. The results show that biochar with a pyrolysis temperature of 700 °C (BC-700) possesses the best TC degradation performance (∼100% within 30 min). Besides, the degradation of TC by BC-700 is less interfered by coexisting anions and water matrix, and exhibits good reusability. Quenching experiments and open circuit voltage tests verified that IO3•, 1O2, and reactive complex BC-PI* are active species involved in TC degradation. In addition, by constructing the relationship between biochar surface properties and degradation rate kobs, it was revealed that the dominant role of pyridinic N in PI adsorption and formation of reactive complexes as well as the promotion of sp2-hybridized carbon in the electron transfer process. This work provides novel insights into the application of biochar in antibiotic wastewater treatment via PI activation.

PubMed Disclaimer

LinkOut - more resources