Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jan;31(1):11-22.
doi: 10.1038/s41594-023-01173-7. Epub 2024 Jan 12.

Keep quiet: the HUSH complex in transcriptional silencing and disease

Affiliations
Review

Keep quiet: the HUSH complex in transcriptional silencing and disease

Iris Müller et al. Nat Struct Mol Biol. 2024 Jan.

Abstract

The human silencing hub (HUSH) complex is an epigenetic repressor complex whose role has emerged as an important guardian of genome integrity. It protects the genome from exogenous DNA invasion and regulates endogenous retroelements by recruiting histone methyltransferases catalyzing histone 3 lysine 9 trimethylation (H3K9me3) and additional proteins involved in chromatin compaction. In particular, its regulation of transcriptionally active LINE1 retroelements, by binding to and neutralizing LINE1 transcripts, has been well characterized. HUSH is required for mouse embryogenesis and is associated with disease, in particular cancer. Here we provide insights into the structural and biochemical features of the HUSH complex. Furthermore, we discuss the molecular mechanisms by which the HUSH complex is recruited to specific genomic regions and how it silences transcription. Finally, we discuss the role of HUSH complex members in mammalian development, antiretroviral immunity, and diseases such as cancer.

PubMed Disclaimer

References

    1. Tchasovnikarova, I. A. et al. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348, 1481–1485 (2015). - PubMed - DOI - PMC
    1. Eberl, H. C., Spruijt, C. G., Kelstrup, C. D., Vermeulen, M. & Mann, M. A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol. Cell 49, 368–378 (2013). - PubMed - DOI
    1. Muller, H. J. & Altenburg, E. The frequency of translocations produced by X-rays in Drosophila. Genetics 15, 283–311 (1930). - PubMed - DOI - PMC
    1. Blewitt, M. E. et al. An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc. Natl Acad. Sci. USA 102, 7629–7634 (2005). - PubMed - DOI - PMC
    1. Matsumoto-Taniura, N., Pirollet, F., Monroe, R., Gerace, L. & Westendorf, J. M. Identification of novel M phase phosphoproteins by expression cloning. Mol. Biol. Cell 7, 1455–1469 (1996). - PubMed - DOI

LinkOut - more resources