The power of quantum neural networks
- PMID: 38217237
- DOI: 10.1038/s43588-021-00084-1
The power of quantum neural networks
Abstract
It is unknown whether near-term quantum computers are advantageous for machine learning tasks. In this work we address this question by trying to understand how powerful and trainable quantum machine learning models are in relation to popular classical neural networks. We propose the effective dimension-a measure that captures these qualities-and prove that it can be used to assess any statistical model's ability to generalize on new data. Crucially, the effective dimension is a data-dependent measure that depends on the Fisher information, which allows us to gauge the ability of a model to train. We demonstrate numerically that a class of quantum neural networks is able to achieve a considerably better effective dimension than comparable feedforward networks and train faster, suggesting an advantage for quantum machine learning, which we verify on real quantum hardware.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Similar articles
-
Benchmarking Neural Networks For Quantum Computations.IEEE Trans Neural Netw Learn Syst. 2020 Jul;31(7):2522-2531. doi: 10.1109/TNNLS.2019.2933394. Epub 2019 Sep 2. IEEE Trans Neural Netw Learn Syst. 2020. PMID: 31484135
-
Quantum recurrent neural networks for sequential learning.Neural Netw. 2023 Sep;166:148-161. doi: 10.1016/j.neunet.2023.07.003. Epub 2023 Jul 16. Neural Netw. 2023. PMID: 37487411
-
Quantum machine learning.Nature. 2017 Sep 13;549(7671):195-202. doi: 10.1038/nature23474. Nature. 2017. PMID: 28905917
-
Review of some existing QML frameworks and novel hybrid classical-quantum neural networks realising binary classification for the noisy datasets.Sci Rep. 2022 Jul 13;12(1):11927. doi: 10.1038/s41598-022-14876-6. Sci Rep. 2022. PMID: 35831369 Free PMC article. Review.
-
Challenges and opportunities in quantum machine learning.Nat Comput Sci. 2022 Sep;2(9):567-576. doi: 10.1038/s43588-022-00311-3. Epub 2022 Sep 15. Nat Comput Sci. 2022. PMID: 38177473 Review.
Cited by
-
Quantum Machine Learning: A Review and Case Studies.Entropy (Basel). 2023 Feb 3;25(2):287. doi: 10.3390/e25020287. Entropy (Basel). 2023. PMID: 36832654 Free PMC article. Review.
-
Unconditional advantage of noisy qudit quantum circuits over biased threshold circuits in constant depth.Nat Commun. 2025 Apr 15;16(1):3559. doi: 10.1038/s41467-025-58545-4. Nat Commun. 2025. PMID: 40234377 Free PMC article.
-
Recurrent quantum embedding neural network and its application in vulnerability detection.Sci Rep. 2024 Jun 13;14(1):13642. doi: 10.1038/s41598-024-63021-y. Sci Rep. 2024. PMID: 38871946 Free PMC article.
-
Research on Information Visualization Graphic Design Teaching Based on DBN Algorithm.Comput Intell Neurosci. 2021 Sep 28;2021:3355030. doi: 10.1155/2021/3355030. eCollection 2021. Comput Intell Neurosci. 2021. Retraction in: Comput Intell Neurosci. 2023 Jun 28;2023:9816060. doi: 10.1155/2023/9816060. PMID: 34621307 Free PMC article. Retracted.
-
Hybrid quantum-classical-quantum convolutional neural networks.Sci Rep. 2025 Aug 28;15(1):31780. doi: 10.1038/s41598-025-13417-1. Sci Rep. 2025. PMID: 40877341 Free PMC article.
References
-
- Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016); http://www.deeplearningbook.org
-
- Baldi, P. & Vershynin, R. The capacity of feedforward neural networks. Neural Networks 116, 288–311 (2019). - DOI
-
- Dziugaite, G. K. & Roy, D. M. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. In Proc. 33rd Conference on Uncertainty in Artificial Intelligence (UAI, 2017).
-
- Schuld, M. Supervised Learning with Quantum Computers (Springer, 2018).
-
- Zoufal, C., Lucchi, A. & Woerner, S. Quantum generative adversarial networks for learning and loading random distributions. npj Quant. Inf. 5, 1–9 (2019).
LinkOut - more resources
Full Text Sources