Scalable optical learning operator
- PMID: 38217249
- DOI: 10.1038/s43588-021-00112-0
Scalable optical learning operator
Abstract
Today's heavy machine learning tasks are fueled by large datasets. Computing is performed with power-hungry processors whose performance is ultimately limited by the data transfer to and from memory. Optics is a powerful means of communicating and processing information, and there is currently intense interest in optical information processing for realizing high-speed computations. Here we present and experimentally demonstrate an optical computing framework called scalable optical learning operator, which is based on spatiotemporal effects in multimode fibers for a range of learning tasks including classifying COVID-19 X-ray lung images, speech recognition and predicting age from images of faces. The presented framework addresses the energy scaling problem of existing systems without compromising speed. We leverage simultaneous, linear and nonlinear interaction of spatial modes as a computation engine. We numerically and experimentally show the ability of the method to execute several different tasks with accuracy comparable with a digital implementation.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
References
-
- Cutrona, L., Leith, E. N., Palermo, C. & Porcello, L. Optical data processing and filtering systems. IRE Trans. Inf. Theory 6, 386–400 (1960). - DOI
-
- Cutrona, L. J., Leith, E. N., Porcello, L. J. & Vivian, W. E. On the application of coherent optical processing techniques to synthetic-aperture radar. Proc. IEEE 54, 1026–1032 (1966). - DOI
-
- Miller, D. A. B. et al. Novel hybrid optically bistable switch: the quantum well self-electro-optic effect device. Appl. Phys. Lett. 45, 13–15 (1984). - DOI
-
- Goodman, J. W., Leonberger, F. J., Kung, S. Y. & Athale, R. A. Optical interconnections for VLSI systems. Proc. IEEE 72, 850–866 (1984). - DOI
-
- Feldman, M. R., Esener, S. C., Guest, C. C. & Lee, S. H. Comparison between optical and electrical interconnects based on power and speed considerations. Appl. Opt. 27, 1742–1751 (1988). - DOI
LinkOut - more resources
Full Text Sources