Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 1:175:215-224.
doi: 10.1016/j.wasman.2024.01.004. Epub 2024 Jan 12.

Modulating poly(lactic acid) degradation rate for environmentally sustainable applications

Affiliations
Free article

Modulating poly(lactic acid) degradation rate for environmentally sustainable applications

Sara Liparoti et al. Waste Manag. .
Free article

Abstract

The huge amount of plastics generated by the massive use of packaging makes it difficult to manage waste safely. Introducing biodegradable polymers, such as poly(lactic acid) (PLA), can at least partially reduce the environmental pollution from plastic waste. Biodegradable polymers must have a degradation rate appropriate for the intended use to replace durable plastics. This work aims to introduce PLA fillers that can modulate the degradation rate during hydrolysis and composting. For this purpose, fumaric acid and magnesium hydroxide have been proposed. The experimental findings demonstrated that magnesium oxide makes hydrolysis faster than fumaric acid. A model describing the hydrolysis reaction, which also considers the effect of crystallinity, is proposed. The model can capture the filler effect on the kinetic constants related to the autocatalytic part of the hydrolysis reaction. Degradation of the PLA and compounds was also conducted in a composting medium. The compound with fumaric acid shows faster degradation than the compound with magnesium oxide; this behavior is opposite to what is observed during hydrolysis. Degradation in a composting medium is favored in a narrow pH window corresponding to the optimum environment for microorganism growth. Magnesium oxide leads to a pH increase above the optimum level, making the environment less favorable to microorganism growth. Vice-versa, fumaric acid maintains the pH level in the optimum range: it represents an additional carbon source for microorganism growth.

Keywords: Composting; Degradation; Hydrolysis; Modeling of degradation; PLA.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources