Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar:213:90-101.
doi: 10.1016/j.freeradbiomed.2024.01.013. Epub 2024 Jan 14.

METTL4 mediated-N6-methyladenosine promotes acute lung injury by activating ferroptosis in alveolar epithelial cells

Affiliations

METTL4 mediated-N6-methyladenosine promotes acute lung injury by activating ferroptosis in alveolar epithelial cells

Aming Sang et al. Free Radic Biol Med. 2024 Mar.

Abstract

Sepsis-induced acute lung injury has been deemed to be an life-threatening pulmonary dysfunction caused by a dysregulated host response to infection. The modification of N6-Methyladenosine (m6A) is implicated in several biological processes, including mitochondrial transcription and ferroptosis. Ferroptosis is an iron-dependent type of programed cell death, which plays a role in sepsis-induced acute lung injury (ALI). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of intracellular oxidative homeostasis, linked to ferroptosis resistance. This research aims to explore the effect of m6A in ferroptosis in sepsis-induced ALI. First, we found a time-dependent dynamic alteration on pulmonary methylation level during sepsis-induced ALI. We identified METTL4 as a differentially expressed gene in ALI mice using m6A sequencing and RNA-sequencing, and revealed the methylation of several ferroptosis related genes (Nrf2). Thus, we generated METTL4 deficiency mice and found that METTL4 knockdown alleviated ferroptosis, as evidenced by lipid ROS, MDA, Fe2+, as well as alterations in GPX4 and SLC7A11 protein expression. Consistently, we found that METTL4 silencing could decrease ferroptosis sensitivity in LPS-induced TC-1 cells. Furthermore, both the dual-luciferase reporter assay and rescue experiments indicated that METTL4 mediated the N6-methyladenosine of Nrf2 3'UTR, then YTHDF2 binded with the m6A site, promoting the degradation of Nrf2. In conclusion, we revealed that METTL4 promoted alveolar epithelial cells ferroptosis in sepsis-induced lung injury via N6-methyladenosine of Nrf2, which might provide a novel approach to therapeutic strategies for sepsis-induced ALI.

Keywords: Acute lung injury; Ferroptosis; N6-methyladenosine (m6A); Sepsis.

PubMed Disclaimer

Publication types

LinkOut - more resources