Deep learning in terrestrial conservation biology
- PMID: 38227170
- DOI: 10.1007/s42977-023-00200-4
Deep learning in terrestrial conservation biology
Abstract
Biodiversity is being lost at an unprecedented rate on Earth. As a first step to more effectively combat this process we need efficient methods to monitor biodiversity changes. Recent technological advance can provide powerful tools (e.g. camera traps, digital acoustic recorders, satellite imagery, social media records) that can speed up the collection of biological data. Nevertheless, the processing steps of the raw data served by these tools are still painstakingly slow. A new computer technology, deep learning based artificial intelligence, might, however, help. In this short and subjective review I oversee recent technological advances used in conservation biology, highlight problems of processing their data, shortly describe deep learning technology and show case studies of its use in conservation biology. Some of the limitations of the technology are also highlighted.
Keywords: Biomonitoring; Camera traps; Convolutional neural networks; Deep artificial neural networks; Passive acoustic monitoring; Satellite imagery; Social media.
© 2024. The Author(s).
Similar articles
-
Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.Methods Mol Biol. 2021;2190:167-184. doi: 10.1007/978-1-0716-0826-5_7. Methods Mol Biol. 2021. PMID: 32804365 Review.
-
Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning.Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):E5716-E5725. doi: 10.1073/pnas.1719367115. Epub 2018 Jun 5. Proc Natl Acad Sci U S A. 2018. PMID: 29871948 Free PMC article.
-
Recent Progress of Deep Learning in Drug Discovery.Curr Pharm Des. 2021;27(17):2088-2096. doi: 10.2174/1381612827666210129123231. Curr Pharm Des. 2021. PMID: 33511933
-
The Application of Artificial Intelligence to Acoustic Data in Otolaryngology.Otolaryngol Clin North Am. 2024 Oct;57(5):781-789. doi: 10.1016/j.otc.2024.06.011. Epub 2024 Jul 23. Otolaryngol Clin North Am. 2024. PMID: 39048506 Review.
-
[Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis].Vestn Oftalmol. 2024;140(3):82-87. doi: 10.17116/oftalma202414003182. Vestn Oftalmol. 2024. PMID: 38962983 Review. Russian.
Cited by
-
Machine learning training data: over 500,000 images of butterflies and moths (Lepidoptera) with species labels.Sci Data. 2025 Aug 6;12(1):1369. doi: 10.1038/s41597-025-05708-z. Sci Data. 2025. PMID: 40770239 Free PMC article.
References
-
- Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS et al (2016) TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv https://doi.org/10.48550/arXiv.1603.04467
-
- Araujo G, Ismail AR, McCann C, McCann D, Legaspi CG, Snow S, Labaja J, Manjaji-Matsumoto M, Ponzo A (2020) Getting the most out of citizen science for endangered species such as whale shark. J Fish Biol 96(4):864–867. https://doi.org/10.1111/jfb.14254 - DOI - PubMed
-
- August TA, Pescott OL, Joly A, Bonnet P (2020) AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns 1(7):100116. https://doi.org/10.1016/j.patter.2020.100116 - DOI - PubMed - PMC
-
- Ball JGC, Petrova K, Coomes DA, Flaxman S (2021) Using deep convolutional neural networks to forecast spatial patterns of Amazonian deforestation. Methods Ecol Evol 100:200. https://doi.org/10.1111/2041-210X.13953 - DOI
-
- Ball JE, Anderson DT, Chan CS (2017) Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. J Appl Remote Sens 11(4):042609. https://doi.org/10.1117/1.JRS.11.042609 - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Research Materials