Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec 23;6(2):638-647.
doi: 10.1039/d3na00949a. eCollection 2024 Jan 16.

Synergistic effect of composition gradient and morphology on the catalytic activity of amorphous FeCoNi-LDH

Affiliations

Synergistic effect of composition gradient and morphology on the catalytic activity of amorphous FeCoNi-LDH

Yuan-Yuan Li et al. Nanoscale Adv. .

Abstract

The rational design of electrocatalysts with well-designed compositions and structures for the oxygen evolution reaction (OER) is promising and challenging. Herein, we developed a novel strategy - a one-step double-cation etching sedimentation equilibrium strategy - to synthesize amorphous hollow Fe-Co-Ni layered double hydroxide nanocages with an outer surface of vertically interconnected ultrathin nanosheets (Fe-Co-Ni-LDH), which primarily depends on the in situ etching sedimentation equilibrium of the template interface. This unique vertical nanosheet-shell hierarchical nanostructure possesses enhanced charge transfer, increased active sites, and favorable kinetics during electrolysis, resulting in superb electrocatalytic performance for the oxygen evolution reaction (OER). Specifically, the Fe-Co-Ni-LDH nanocages exhibited remarkable OER activity in alkaline electrolytes and achieved a current density of 100 mA cm-2 at a low overpotential of 272 mV with excellent stability. This powerful strategy provides a profound molecular-level insight into the control of the morphology and composition of 2D layered materials.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. The preparation of hollow Fe-Co-Ni-LDH nanocages. The uniform hierarchical triangular Fe-Co-Ni-LDH nanocages are prepared via the dication-exchange self-templating strategy.
Fig. 2
Fig. 2. Morphology control of hollow Fe-Co-Ni-LDH nanocages. SEM images of (a and b) Co-MOF, (c and d) Ni-Co-LDH, (e) Fe-Co-LDH, and (f–j) Fe-Co-Ni-LDH-2. (k–n) SEM-EDS elemental mapping of Fe-Co-Ni-LDH-2. (o) XRD patterns of Fe-Co-Ni-LDH-2.
Fig. 3
Fig. 3. SEM images of (a and b) Fe-Co-Ni-LDH-1, (c) Fe-Co-Ni-LDH-2, (d and e) Fe-Co-Ni-LDH-3, (f and g) Fe-Co-Ni-LDH-4, and (h and i) Fe-Co-Ni-LDH-5.
Fig. 4
Fig. 4. SEM images of (a, d, and g) Ni-Co-LDH-1, (b and c) Fe-Co -LDH-2, (e and f) Fe-Co -LDH-4, and (h and i) Fe-Co-LDH-5.
Fig. 5
Fig. 5. Microstructure of hollow Fe-Co-Ni-LDH nanocages. (a) XPS, (b) Ni 2p, (c) Co 2p, and (d) Fe 2p spectra of Fe-Co-Ni-LDH-2.
Fig. 6
Fig. 6. The OER activity of hollow Fe-Co-Ni-LDH nanocages. (a) Linear sweep voltammetry curves, (b) comparison of OER activity of the samples at a current density of 50 mA cm−2, and (c) Tafel plots of the electrocatalysts in 1.0 M KOH solution of NF, Ir/C, Ni-Co-LDH, Fe-Co-LDH and Fe-Co-Ni-LDH. (d) Linear sweep voltammetry curves of Fe-Co-Ni-LDH-1, Fe-Co-Ni-LDH-2, Fe-Co-Ni-LDH-3, and Fe-Co-Ni-LDH-4.
Fig. 7
Fig. 7. (a) Time-dependent current density curves of Fe-Co-Ni-LDH-2. (b) The electrochemical surface areas of Ni-Co-LDH and Fe-Co-Ni-LDH-2. (c) Nyquist plots of impedance spectroscopy analysis of Ni-Co-LDH, Fe-Co-LDH, and Fe-Co-Ni-LDH-2. (d) Nyquist plots of impedance spectroscopy analysis of the Ir/C sample.

References

    1. Suntivich J. May K. J. Gasteiger H. A. Goodenough J. B. Shao-Horn Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science. 2011;334:1383–1385. doi: 10.1126/science.1212858. - DOI - PubMed
    1. Wu T. Sun S. Song J. Xi S. Du Y. Chen B. Sasangka W. A. Liao H. Gan C. L. Scherer G. G. Zeng L. Wang H. Li H. Grimaud A. Xu Z. J. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019;2:763–772. doi: 10.1038/s41929-019-0325-4. - DOI
    1. Grimaud A. Hong W. T. Shao-Horn Y. Tarascon J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 2016;15:121–126. doi: 10.1038/nmat4551. - DOI - PubMed
    1. Li F. Han G.-F. Jeon J.-P. Shin T. J. Fu Z. Lu Y. Baek J.-B. Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. ACS Nano. 2021;15:11891–11897. doi: 10.1021/acsnano.1c02989. - DOI - PubMed
    1. Hong W. T. Risch M. Stoerzinger K. A. Grimaud A. Suntivich J. Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015;8:1404–1427. doi: 10.1039/C4EE03869J. - DOI

LinkOut - more resources