Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar;11(12):e2307226.
doi: 10.1002/advs.202307226. Epub 2024 Jan 18.

Direct Construction of C-Alkyl Glycosides from Non-Activated Olefins via Nickel-Catalyzed C(sp3)─C(sp3) Coupling Reaction

Affiliations

Direct Construction of C-Alkyl Glycosides from Non-Activated Olefins via Nickel-Catalyzed C(sp3)─C(sp3) Coupling Reaction

Changyue Yu et al. Adv Sci (Weinh). 2024 Mar.

Abstract

Among C-glycosides, C-alkyl glycosides are significant building blocks for natural products and glycopeptides. However, research on efficient construction methods for C-alkyl glycosides remains relatively limited. Compared with Michael acceptors, non-activated olefins are more challenging substrates and have rarely been employed in the construction of C-glycosides. Here, a highly efficient and convenient approach for the synthesis of C-alkyl glycosides through a nickel-catalyzed C(sp3)-C(sp3) coupling reaction is presented. A distinctive feature of this method is its utilization of non-activated olefins as the anomeric radical acceptors for hydroalkylation, allowing for the direct formation of C-glycoside bonds in a single step. Furthermore, this method demonstrates excellent compatibility with a broad scope of highly reactive functional groups. Mechanistic investigations suggest that the reaction proceeds via a free radical pathway, leading predominantly to the formation of products with α-configuration. Overall, this innovative methodology offers a versatile and practical approach for the synthesis of C-alkyl glycosides, offering new avenues for the production of intricate glycosides with potential applications in drug discovery and chemical biology.

Keywords: C(sp3)─C(sp3) coupling; C‐alkyl glycosides; nickel catalysis; non‐activated olefins.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest

Figures

Figure 1
Figure 1
Representative structures of C‐alkyl glycosides.
Scheme 1
Scheme 1
Metal‐catalyzed coupling reaction for the construction of C‐alkyl glycosides.
Scheme 2
Scheme 2
Gram‐scale synthesis, removal of the protecting groups, and synthetic applications.
Scheme 3
Scheme 3
Mechanistic studies and proposed reaction mechanism.

Similar articles

Cited by

References

    1. a) Cao X., Du X., Jiao H., An Q., Chen R., Fang P., Wang J., Yu B., Acta Pharm Sin B 2022, 12, 3783; - PMC - PubMed
    2. b) Jiang H., Qin X., Wang Q., Xu Q., Wang J., Wu Y., Chen W., Wang C., Zhang T., Xing D., Zhang R., Eur. J. Med. Chem. 2021, 223, 113633; - PubMed
    3. c) Pan L., Cai C., Liu C., Liu D., Li G., Linhardt R. J., Yu G., Curr Opin Biotechnol 2021, 69, 191; - PubMed
    4. d) Valverde P., Ardá A., Reichardt N.‐C., Jiménez‐Barbero J., Gimeno A., MedChemComm 2019, 10, 1678. - PMC - PubMed
    1. a) Dondoni A., Marra A., Chem. Rev. 2000, 100, 4395; - PubMed
    2. b) Yang G., Schmieg J., Tsuji M., Franck R. W., Angew. Chem., Int. Ed. 2004, 43, 3818; - PubMed
    3. c) Franck R. W., Tsuji M., ACC. Chem. Res. 2006, 39, 692; - PubMed
    4. d) Leclerc E., Pannecoucke X., Ethève‐Quelquejeu M., Sollogoub M., Chem. Soc. Rev. 2013, 42, 4270. - PubMed
    5. e) Wei A., Boy K. M., Kishi Y., J. Am. Chem. Soc. 1995, 117, 9432.
    1. a) Yang Y., Yu B., Chem. Rev. 2017, 117, 12281; - PubMed
    2. b) Bennett C. S., Galan M. C., Chem. Rev. 2018, 118, 7931; - PMC - PubMed
    3. c) Ghouilem J., De Robichon M., Le Bideau F., Ferry A., Messaoudi S., Chemistry 2021, 27, 491; - PubMed
    4. d) Gou X.‐Y., Zhu X.‐Y., Zhang B.‐S., Liang Y.‐M., Chemistry 2023, 29, e202203351; - PubMed
    5. e) Shang W., Shi R., Niu D., Chin. J. Chem. 2023, 41, 2217;
    6. f) Xu L.‐Y., Fan N.‐L., Hu X.‐G., Org. Biomol. Chem. 2020, 18, 5095; - PubMed
    7. g) Azeem Z., Mandal P. K., Org. Biomol. Chem. 2022, 20, 264; - PubMed
    8. h) Yuan Z. B., Zhu C. T., Zhang Y., Rao Y. J., Eur. J. Org. Chem. 2022, e202201036.
    1. a) Liu M., Niu Y., Wu Y.‐F., Ye X.‐S., Org. Lett. 2016, 18, 1836; - PubMed
    2. b) Wang Q., An S., Deng Z., Zhu W., Huang Z., He G., Chen G., Nat. Catal. 2019, 2, 793;
    3. c) Ding Y.‐N., Li N., Huang Y.‐C., Shi W.‐Y., Zheng N., Wang C.‐T., An Y., Liu X.‐Y., Liang Y.‐M., Org. Lett. 2022, 24, 2381; - PubMed
    4. d) Wang Q., Fu Y., Zhu W., An S., Zhou Q., Zhu S.‐F., He G., Liu P., Chen G., CCS. Chem. 2021, 3, 1729;
    5. e) Sun Q., Zhang H., Wang Q., Qiao T., He G., Chen G., Angew. Chem., Int. Ed. 2021, 60, 19620; - PubMed
    6. f) Zhu W., Sun Q., Chang H., Zhang H.‐X., Wang Q., Chen G., He G., Chin. J. Chem. 2022, 40, 571;
    7. g) Ding Y.‐N., Shi W.‐Y., Liu C., Zheng N., Li M., An Y., Zhang Z., Wang C.‐T., Zhang B.‐S., Liang Y.‐M., J. Org. Chem. 2020, 85, 11280; - PubMed
    8. h) Shi W.‐Y., Ding Y.‐N., Zheng N., Gou X.‐Y., Zhang Z., Chen X., Luan Y.‐Y., Niu Z.‐J., Liang Y.‐M., Chem. Commun. 2021, 57, 8945; - PubMed
    9. i) Gou X.‐Y., Li Y., Shi W.‐Y., Luan Y.‐Y., Ding Y.‐N., An Y., Huang Y.‐C., Zhang B.‐S., Liu X.‐Y., Liang Y.‐M., Angew. Chem., Int. Ed. 2022, 61, e202205656; - PubMed
    10. j) Liu Y., Wang Y., Dai W., Huang W., Li Y., Liu H., Angew. Chem., Int. Ed. 2020, 59, 3491; - PubMed
    11. k) Yu C., Liu Y., Xie X., Hu S., Zhang S., Zeng M., Zhang D., Wang J., Liu H., Adv. Synth. Catal. 2021, 363, 4926;
    12. l) Wu J., Kaplaneris N., Ni S., Kaltenhäuser F., Ackermann L., Chem. Sci. 2020, 11, 6521; - PMC - PubMed
    13. m) Wu J., Wei W., Pöhlmann J., Purushothaman R., Ackermann L., Angew. Chem., Int. Ed. 2023, 62, e202219319; - PubMed
    14. n) Wu J., Kopp A., Ackermann L., Angew. Chem., Int. Ed. 2022, 61, e202114993; - PMC - PubMed
    15. o) Lv W., Chen Y., Wen S., Ba D., Cheng G., J. Am. Chem. SoC. 2020, 142, 14864; - PubMed
    16. p) Xia L., Fan W., Yuan X.‐A., Yu S., ACS Catal. 2021, 11, 9397;
    17. q) Chauhan N. S., Dubey A., Mandal P. K., Org. Lett. 2022, 24, 7067; - PubMed
    18. r) Sakamoto K., Nagai M., Ebe Y., Yorimitsu H., Nishimura T., ACS Catal. 2019, 9, 1347.
    1. a) Xia Y., Wang Y., Zhang Z., Gulzar T., Lin Y., Wang J., Zhu D., Yu B., Org. Lett. 2023, 25, 6741; - PubMed
    2. b) Liu J., Gong H., Org. Lett. 2018, 20, 7991; - PubMed
    3. c) Zhao C., Jia X., Wang X., Gong H., J. Am. Chem. Soc. 2014, 136, 17645; - PubMed
    4. d) Wang Q., Sun Q., Jiang Y., Zhang H., Yu L., Tian C., Chen G., Koh M. J., Nat Synth 2022, 1, 235;
    5. e) Shang W., Niu D., ACC. Chem. Res. 2023, 56, 2473; - PubMed
    6. f) Xu S., Zhang W., Li C., Li Y., Zeng H., Wang Y., Zhang Y., Niu D., Angew. Chem., Int. Ed. 2023, 62, e202218303; - PubMed
    7. g) Zhang C., Xu S. Y., Zuo H., Zhang X., Dang Q. D., Niu D. W., Nat Synth 2023, 2, 251;
    8. h) Xie D., Wang Y., Zhang X., Fu Z., Niu D., Angew. Chem., Int. Ed. 2022, 61, e202204922; - PubMed
    9. i) Mou Z.‐D., Wang J.‐X., Zhang X., Niu D., Adv. Synth. Catal. 2021, 363, 3025;
    10. j) Jiang Y., Zhang Y., Lee B. C., Koh M. J., Angew. Chem., Int. Ed. 2023, 62, e202305138; - PubMed
    11. k) Wang Q., Lee B. C., Song N., Koh M. J., Angew. Chem., Int. Ed. 2023, 62, e202301081; - PubMed
    12. l) Jiang Y., Yang K., Wei Y., Wang Q., Li S.‐J., Lan Y., Koh M. J., Angew. Chem., Int. Ed. 2022, 61, e202211043; - PubMed
    13. m) Wang Q., Lee B. C., Tan T. J., Jiang Y., Ser W. H., Koh M. J., Nat Synth 2022, 1, 967;
    14. n) Chen A., Zhao S., Han Y., Zhou Z., Yang B., Xie L.‐G., Walczak M. A., Zhu F., Chem. Sci. 2023, 14, 7569. - PMC - PubMed

LinkOut - more resources