Prediction of air pollutant concentrations based on the long short-term memory neural network
- PMID: 38237434
 - DOI: 10.1016/j.jhazmat.2023.133099
 
Prediction of air pollutant concentrations based on the long short-term memory neural network
Abstract
In recent years, environmental problems caused by air pollutants have received increasing attention. Effective prediction of air pollutant concentrations is an important way to protect the public from harm. Recently, due to extreme climate and social development, the forest fire frequency has increased. During the biomass combustion process caused by forest fires, the content of particulate matter (PM) in the atmosphere increases significantly. However, most existing air pollutant concentration prediction methods do not consider the considerable impact of forest fires, and effective long-term prediction models have not been established to provide early warnings for harmful gases. Therefore, in this paper, we collected a daily air quality data set (aerodynamic diameter smaller than 2.5 µm, PM2.5) for Heilongjiang Province, China, from 2017 to 2023 and A novel Long Short-Term Memory (LSTM) model was proposed to effectively predict the situation of air pollutants. The model could automatically extract information of the effective time step from the historical data set and combine forest fire disturbance and climate data as auxiliary data to improve the model prediction ability. Moreover, we created artificial neural network (ANN) and permissive regression (support vector machine, SVR) models for comparative experiments. The results showed that the precision accuracy of the developed LSTM model is higher. Unlike the other models, the LSTM neural network model could effectively predict the concentration of air pollutants in long-term series. Regarding long-term observation missions (7 days), the proposed model performed well and stably, with R2 reaching over 88%.
Keywords: Air quality; Environmental management; Forest fire; LSTM.
Copyright © 2024. Published by Elsevier B.V.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
