Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 2;89(3):1898-1909.
doi: 10.1021/acs.joc.3c02557. Epub 2024 Jan 18.

Nitro-sulfinate Reductive Coupling to Access (Hetero)aryl Sulfonamides

Affiliations

Nitro-sulfinate Reductive Coupling to Access (Hetero)aryl Sulfonamides

Sandra E Gatarz et al. J Org Chem. .

Abstract

A method to assemble (hetero)aryl sulfonamides via the reductive coupling of aryl sulfinates and nitroarenes is reported. Various reducing conditions with sodium bisulfite and with or without tin(II) chloride in DMSO were developed using an ultrasound bath to improve reaction homogeneity and mixing. A range of (hetero)aryl sulfonamides bearing a selection of functional groups were prepared, and the mechanism of the transformation was investigated. These investigations have led us to propose the formation of nitrosoarene intermediates, which were established via an independent molecular coupling strategy.

PubMed Disclaimer

Conflict of interest statement

The authors declare the following competing financial interest(s): The authors declare no competing financial interest(s) other than WJ, PM, ELF and DCB are employees and stockholders of Pfizer Inc.

Figures

Figure 1
Figure 1
Drugs containing (hetero)aryl sulfonamides.
Scheme 1
Scheme 1. (a–e) Previously Reported Nitro-sulfinate Reductive Coupling Strategies as Alternative S–N Bond-Forming Reactions
Scheme 2
Scheme 2. a) Control Experiment Using N-Phenyl Hydroxylamine (5), (b) Control Experiment Using Azobenzene Dioxide (6a), (c) Dissolution-Influenced Equilibrium of Azobenzene Dioxide 6a and Nitrosobenzene (6b), (d) Sodium Bisulfite-Mediated Reduction of N-Sulfonyl Hydroxylamine 7, and (e) Control Experiment Using a Slowly Added Solution of Nitrosobenzene (6b)
Scheme 3
Scheme 3. Proposed Reaction Mechanism

Similar articles

Cited by

References

    1. Smith D. A.; Jones R. M. The sulfonamide group as a structural alert: A distorted story?. Curr. Opin. Drug Discovery Devel. 2008, 11, 72–79. - PubMed
    2. Scott K. A.; Njardarson J. T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. (Z) 2018, 376, 5.10.1007/s41061-018-0184-5. - DOI - PubMed
    1. Petkowski J. J.; Bains W.; Seager S. Natural Products Containing a Nitrogen–Sulfur Bond. J. Nat. Prod. 2018, 81, 423–446. 10.1021/acs.jnatprod.7b00921. - DOI - PubMed
    1. Zhao C.; Rakesh K. P.; Ravidar L.; Fang W.-Y.; Qin H.-L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem. 2019, 162, 679–734. 10.1016/j.ejmech.2018.11.017. - DOI - PMC - PubMed
    2. Kalgutkar A. S.; Jones R.; Sawant A. in Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of the Building Blocks of Medicinal Chemistry on ADMET; Smith D. A., Ed.; Royal Society of Chemistry: Cambridge, UK, 2010, 210 – 274.
    1. For examples of multicomponent reactions, see:

    2. DeBergh J. R.; Niljianskul N.; Buchwald S. L. Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids. J. Am. Chem. Soc. 2013, 135, 10638–10641. 10.1021/ja405949a. - DOI - PMC - PubMed
    3. Chen Y.; Murray P. R. D.; Davies A. T.; Willis M. C. Direct Copper-Catalyzed Three-Component Synthesis of Sulfonamides. J. Am. Chem. Soc. 2018, 140, 8781–8787. 10.1021/jacs.8b04532. - DOI - PubMed
    4. Bajohr J.; Diallo A. G.; Whyte A.; Gaillard S.; Renaud J.-L.; Lautens M. Palladium-Catalyzed Domino Heck/Sulfination: Synthesis of Sulfonylated Hetero- and Carbocyclic Scaffolds Using DABCO-Bis(sulfur dioxide). Org. Lett. 2021, 23, 2797–2801. 10.1021/acs.orglett.1c00716. - DOI - PubMed
    5. Pedersen P. S.; Blakemore D. C.; Chinigo G. M.; Knauber T.; MacMillan D. W. C. One-Pot Synthesis of Sulfonamides from Unactivated Acids and Amines via Aromatic Decarboxylative Halosulfonylation. J. Am. Chem. Soc. 2023, 145, 21189–21196. 10.1021/jacs.3c08218. - DOI - PMC - PubMed
    6. Zhang M.; Liu L.; Wang B.; Yang Y.; Liu Y.; Wang Z.; Wang Q. Direct Synthesis of Sulfonamides via Synergetic Photoredox and Copper Catalysis. ACS Catal. 2023, 13, 11580–11588. 10.1021/acscatal.3c03096. - DOI
    7. For examples of S-N bond formation towards sulfonamides, see:

    8. Caddick S.; Wilden J. D.; Judd D. B. Direct Synthesis of Sulfonamides and Activated Sulfonate Esters from Sulfonic Acids. J. Am. Chem. Soc. 2004, 126, 1024–1025. 10.1021/ja0397658. - DOI - PubMed
    9. Wright S. W.; Hallstrom K. N. A Convenient Preparation of Heteroaryl Sulfonamides and Sulfonyl Fluorides from Heteroaryl Thiols. J. Org. Chem. 2006, 71, 1080–1084. 10.1021/jo052164+. - DOI - PubMed
    10. Bahrami K.; Khodaei M. M.; Soheilizad M. Direct Conversion of Thiols to Sulfonyl Chlorides and Sulfonamides. J. Org. Chem. 2009, 74, 9287–9291. 10.1021/jo901924m. - DOI - PubMed
    11. Taniguchi N. Copper-Catalyzed Formation of Sulfur-Nitrogen Bonds by Dehydrocoupling of Thiols with Amines. Eur. J. Org. Chem. 2010, 2010, 2670–2673. 10.1002/ejoc.201000167. - DOI
    12. Tang X.; Huang L.; Qi C.; Wu X.; Wu W.; Jiang H. Copper-catalyzed sulfonamides formation from sodium sulfinates and amines. Chem. Commun. 2013, 49, 6102–6104. 10.1039/c3cc41249k. - DOI - PubMed
    13. Pan X.; Gao J.; Liu J.; Lai J.; Jiang H.; Yuan G. Synthesis of sulfonamides via I2-mediated reaction of sodium sulfinates with amines in an aqueous medium at room temperature. Green Chem. 2015, 17, 1400–1403. 10.1039/C4GC02115K. - DOI
    14. Jiang J.; Zeng S.; Chen D.; Cheng C.; Deng W.; Xiang J. Synthesis of N-arylsulfonamides via Fe-promoted reaction of sulfonyl halides with nitroarenes in an aqueous medium. Org. Biomol. Chem. 2018, 16, 5016–5020. 10.1039/C8OB01172A. - DOI - PubMed
    15. For examples of C-N bond formation towards sulfonamides, see:

    16. Burton G.; Cao P.; Li G.; Rivero R. Palladium-Catalyzed Intermolecular Coupling of Aryl Chlorides and Sulfonamides under Microwave Irradiation. Org. Lett. 2003, 5, 4373–4376. 10.1021/ol035655u. - DOI - PubMed
    17. Deng W.; Liu L.; Zhang C.; Liu M.; Guo Q.-X. Copper-catalyzed cross-coupling of sulfonamides with aryl iodides and bromides facilitated by amino acid ligands. Tetrahedron Lett. 2005, 46, 7295–7298. 10.1016/j.tetlet.2005.08.149. - DOI
    18. Baffoe J.; Hoe M. Y.; Touré B. B. Copper-Mediated N-Heteroarylation of Primary Sulfonamides: Synthesis of Mono-N-heteroaryl Sulfonamides. Org. Lett. 2010, 12, 1532–1535. 10.1021/ol100263r. - DOI - PubMed
    19. Rosen B. R.; Ruble J. C.; Beauchamp T. J.; Navarro A. Mild Pd-Catalyzed N-Arylation of Methanesulfonamide and Related Nucleophiles: Avoiding Potentially Genotoxic Reagents and Byproducts. Org. Lett. 2011, 13, 2564–2567. 10.1021/ol200660s. - DOI - PubMed
    20. Shekhar S.; Dunn T. B.; Kotecki B. J.; Montavon D. K.; Cullen S. C. A General Method for Palladium-Catalyzed Reactions of Primary Sulfonamides with Aryl Nonaflates. J. Org. Chem. 2011, 76, 4552–4563. 10.1021/jo200443u. - DOI - PubMed
    21. Zheng Q.-Z.; Liang Y.-F.; Qin C.; Jiao N. Ru(II)-catalyzed intermolecular C-H amidation of weakly coordinating ketones. Chem. Commun. 2013, 49, 5654–5656. 10.1039/c3cc42613k. - DOI - PubMed
    22. Bhanuchandra M.; Yadav M. R.; Rit R. K.; Kuram M. R.; Sahoo A. K. Ru(II)-catalyzed intermolecular ortho-C-H amidation of aromatic ketones with sulfonyl azides. Chem. Commun. 2013, 49, 5225–5227. 10.1039/C3CC41915K. - DOI - PubMed
    23. Cao X.; Bai Y.; Xie Y.; Deng G.-J. Palladium-catalyzed arylation of aryl sulfonamides with cyclohexanones. J. Mol. Catal. A Chem. 2014, 383, 94–100. 10.1016/j.molcata.2013.11.023. - DOI
    24. Kim T.; McCarver S. J.; Lee C.; MacMillan D. W. C. Sulfonamidation of Aryl and Heteroaryl Halides through Photosensitized Nickel Catalysis. Angew. Chem., Int. Ed. 2018, 57, 3488–3492. 10.1002/anie.201800699. - DOI - PMC - PubMed
    25. For reviews, see:

    26. Anderson K. K.Comprehensive Organic Chemistry; Pergamon Press: Oxford, 1979, 331– 350;.
    27. Das T. C.; Quadri S. A.; Farooqui M. Recent advances in synthesis of sulfonamides: A review. J. Chem. Biol. Interfaces 2018, 8, 194–204.
    28. Mulina O. M.; Ilovaisky A. I.; Terent’ev A. O. Oxidative Coupling with S-N Bond Formation. Eur. J. Org. Chem. 2018, 2018, 4648–4672. 10.1002/ejoc.201800838. - DOI
    29. Joseph D.; Idris M. A.; Chen J.; Lee S. Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds. ACS Catal. 2021, 11, 4169–4204. 10.1021/acscatal.0c05690. - DOI
    1. Skipper P. L.; Kim M.; Sun H.-L. P.; Wogan G. N.; Tannenbaum S. R. Monocyclic aromatic amines as potential human carcinogens: old is new again. Carcinogenesis 2010, 31, 50–58. 10.1093/carcin/bgp267. - DOI - PMC - PubMed