Advances in artificial intelligence for the diagnosis and treatment of ovarian cancer (Review)
- PMID: 38240090
- PMCID: PMC10828921
- DOI: 10.3892/or.2024.8705
Advances in artificial intelligence for the diagnosis and treatment of ovarian cancer (Review)
Abstract
Artificial intelligence (AI) has emerged as a crucial technique for extracting high‑throughput information from various sources, including medical images, pathological images, and genomics, transcriptomics, proteomics and metabolomics data. AI has been widely used in the field of diagnosis, for the differentiation of benign and malignant ovarian cancer (OC), and for prognostic assessment, with favorable results. Notably, AI‑based radiomics has proven to be a non‑invasive, convenient and economical approach, making it an essential asset in a gynecological setting. The present study reviews the application of AI in the diagnosis, differentiation and prognostic assessment of OC. It is suggested that AI‑based multi‑omics studies have the potential to improve the diagnostic and prognostic predictive ability in patients with OC, thereby facilitating the realization of precision medicine.
Keywords: artificial intelligence; ovarian cancer; radiomics; whole‑slide imaging.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures



Similar articles
-
Radiomics and radiogenomics: extracting more information from medical images for the diagnosis and prognostic prediction of ovarian cancer.Mil Med Res. 2024 Dec 14;11(1):77. doi: 10.1186/s40779-024-00580-1. Mil Med Res. 2024. PMID: 39673071 Free PMC article. Review.
-
Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine.Cold Spring Harb Perspect Med. 2021 Aug 2;11(8):a039537. doi: 10.1101/cshperspect.a039537. Cold Spring Harb Perspect Med. 2021. PMID: 33431509 Free PMC article. Review.
-
Multiomics, artificial intelligence, and precision medicine in perinatology.Pediatr Res. 2023 Jan;93(2):308-315. doi: 10.1038/s41390-022-02181-x. Epub 2022 Jul 8. Pediatr Res. 2023. PMID: 35804156 Free PMC article. Review.
-
Advances of Artificial Intelligence Application in Medical Imaging of Ovarian Cancers.Chin Med Sci J. 2021 Sep 30;36(3):196-203. doi: 10.24920/003963. Chin Med Sci J. 2021. PMID: 34666872 Review.
-
Application of artificial intelligence in the diagnosis and prognostic prediction of ovarian cancer.Comput Biol Med. 2022 Jul;146:105608. doi: 10.1016/j.compbiomed.2022.105608. Epub 2022 May 13. Comput Biol Med. 2022. PMID: 35584585 Review.
Cited by
-
Developing a deep learning model for predicting ovarian cancer in Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) Category 4 lesions: A multicenter study.J Cancer Res Clin Oncol. 2024 Jul 9;150(7):346. doi: 10.1007/s00432-024-05872-6. J Cancer Res Clin Oncol. 2024. PMID: 38981916 Free PMC article.
-
Enhancing ovarian cancer prognosis with an artificial intelligence-derived model: Multi-omics integration and therapeutic implications.Transl Oncol. 2025 Sep;59:102439. doi: 10.1016/j.tranon.2025.102439. Epub 2025 Jun 27. Transl Oncol. 2025. PMID: 40580871 Free PMC article.
-
Artificial Intelligence in Gynecological Oncology from Diagnosis to Surgery.Cancers (Basel). 2025 Mar 21;17(7):1060. doi: 10.3390/cancers17071060. Cancers (Basel). 2025. PMID: 40227612 Free PMC article. Review.
-
Ovarian Cancer: Multi-Omics Data Integration.Int J Mol Sci. 2025 Jun 21;26(13):5961. doi: 10.3390/ijms26135961. Int J Mol Sci. 2025. PMID: 40649740 Free PMC article. Review.
-
Early Diagnosis of Ovarian Cancer: A Comprehensive Review of the Advances, Challenges, and Future Directions.Diagnostics (Basel). 2025 Feb 7;15(4):406. doi: 10.3390/diagnostics15040406. Diagnostics (Basel). 2025. PMID: 40002556 Free PMC article. Review.
References
-
- Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, et al. Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2) Lancet. 2015;385:977–1010. doi: 10.1016/S0140-6736(14)62038-9. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical