Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 1:344:123363.
doi: 10.1016/j.envpol.2024.123363. Epub 2024 Jan 17.

ZnO quantum dots alleviate salt stress in Salvia miltiorrhiza by enhancing growth, scavenging reactive oxygen species, and modulating stress-responsive genes

Affiliations

ZnO quantum dots alleviate salt stress in Salvia miltiorrhiza by enhancing growth, scavenging reactive oxygen species, and modulating stress-responsive genes

Songyue Chai et al. Environ Pollut. .

Abstract

Experiments were conducted to investigate the alleviating effects of ZnO quantum dots (ZnO QDs) on salt stress in Salvia miltiorrhiza by comparing them with conventional ZnO nanoparticles (ZnO NPs). The results demonstrated that compared with salt stress alone, foliar application of ZnO QDs significantly improved the biomass as well as the total chlorophyll and carotenoids contents under salt stress. ZnO QDs reduced H2O2 and MDA levels, decreased non-enzymatic antioxidant (ASA and GSH) content, and improved antioxidant enzyme (POD, SOD, CAT, PAL, and PPO) activity under salt stress. Metal elemental analysis further demonstrated that the ZnO QDs markedly increased Zn and K contents while decreasing Na content, resulting in a lower Na/K ratio compared to salt stress alone. Finally, RNA sequencing results indicated that ZnO QDs primarily regulated genes associated with stress-responsive pathways, including plant hormone signal transduction, the MAPK signaling pathway, and metabolic-related pathways, thereby alleviating the adverse effects of salt stress. In comparison, ZnO NPs did not exhibit similar effects in terms of improving plant growth, enhancing the antioxidant system, or regulating stress-responsive genes under salt stress. These findings highlight the distinct advantages of ZnO QDs and suggest their potential as a valuable tool for mitigating salt stress in plants.

Keywords: Alleviative effects; Mechanism; Salt stress; Salvia miltiorrhiza; ZnO quantum dots.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources