Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 15;75(8):2470-2480.
doi: 10.1093/jxb/erae022.

The synergistic effect of multiple organic macromolecules on the formation of calcium oxalate raphides of Musa spp

Affiliations

The synergistic effect of multiple organic macromolecules on the formation of calcium oxalate raphides of Musa spp

Wenjun Zhang et al. J Exp Bot. .

Abstract

Needle-like calcium oxalate crystals called raphides are unique structures in the plant kingdom. Multiple biomacromolecules work together in the regulatory and transportation pathways to form raphides; however, the mechanism by which this occurs remains unknown. Using banana (Musa spp.), this study combined in vivo methods including confocal microscopy, transmission electron microscopy, and Q Exactive mass spectrometry to identify the main biomolecules, such as vesicles, together with the compositions of lipids and proteins in the crystal chamber, which is the membrane compartment that surrounds each raphide during its formation. Simulations of the vesicle transportation process and the synthesis of elongated calcium oxalate crystals in vitro were then conducted, and the results suggested that the vesicles carrying amorphous calcium oxalate and proteins embedded in raphides are transported along actin filaments. These vesicles subsequently fuse with the crystal chamber, utilizing the proteins embedded in the raphides as a template for the final formation of the structure. Our findings contribute to the fundamental understanding of the regulation of the diverse biomacromolecules that are crucial for raphide formation. Moreover, the implications of these findings extend to other fields such as materials science, and particularly the synthesis of functionalized materials.

Keywords: Musa; Actin; banana; biomineralization; calcium oxalate; crystal chamber; embedded protein; raphides; vesicle.

PubMed Disclaimer

Similar articles

Cited by

References

Publication types

Substances

LinkOut - more resources