Spatial transcriptomics data and analytical methods: An updated perspective
- PMID: 38244672
- DOI: 10.1016/j.drudis.2024.103889
Spatial transcriptomics data and analytical methods: An updated perspective
Abstract
Spatial transcriptomics (ST) is a newly emerging field that integrates high-resolution imaging and transcriptomic data to enable the high-throughput analysis of the spatial localization of transcripts in diverse biological systems. The rapid progress in this field necessitates the development of innovative computational methods to effectively tackle the distinct challenges posed by the analysis of ST data. These platforms, integrating AI techniques, offer a promising avenue for understanding disease mechanisms and expediting drug discovery. Despite significant advances in the development of ST data analysis techniques, there is an ongoing need to enhance these models for increased biological relevance. In this review, we briefly discuss the ST-related databases and current deep-learning-based models for spatial transcriptome data analyses and highlight their roles and future perspectives in biomedical applications.
Keywords: deep learning; disease modeling; spatial omics databases; spatial transcriptomics.
Copyright © 2024 Elsevier Ltd. All rights reserved.
Similar articles
-
Computational solutions for spatial transcriptomics.Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147664 Free PMC article. Review.
-
Deep learning in integrating spatial transcriptomics with other modalities.Brief Bioinform. 2024 Nov 22;26(1):bbae719. doi: 10.1093/bib/bbae719. Brief Bioinform. 2024. PMID: 39800876 Free PMC article. Review.
-
Spatial Transcriptomics: A Powerful Tool in Disease Understanding and Drug Discovery.Theranostics. 2024 May 11;14(7):2946-2968. doi: 10.7150/thno.95908. eCollection 2024. Theranostics. 2024. PMID: 38773973 Free PMC article. Review.
-
Research Techniques Made Simple: Spatial Transcriptomics.J Invest Dermatol. 2022 Apr;142(4):993-1001.e1. doi: 10.1016/j.jid.2021.12.014. J Invest Dermatol. 2022. PMID: 35331388 Free PMC article. Review.
-
Navigating the landscapes of spatial transcriptomics: How computational methods guide the way.Wiley Interdiscip Rev RNA. 2024 Mar-Apr;15(2):e1839. doi: 10.1002/wrna.1839. Wiley Interdiscip Rev RNA. 2024. PMID: 38527900 Review.
Cited by
-
Decoding herbal combination models through systematic strategies: insights from target information and traditional Chinese medicine clinical theory.Brief Bioinform. 2025 May 1;26(3):bbaf229. doi: 10.1093/bib/bbaf229. Brief Bioinform. 2025. PMID: 40407387 Free PMC article.
-
Exploring the landscape of Parkinson's disease transcriptomics: a quantitative review of research progress and future directions.Front Aging Neurosci. 2025 May 21;17:1505374. doi: 10.3389/fnagi.2025.1505374. eCollection 2025. Front Aging Neurosci. 2025. PMID: 40469842 Free PMC article. Review.
-
Transcriptomics in the Study of Antiviral Innate Immunity.Methods Mol Biol. 2025;2854:83-91. doi: 10.1007/978-1-0716-4108-8_10. Methods Mol Biol. 2025. PMID: 39192121
-
Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy.Front Immunol. 2024 Dec 19;15:1499301. doi: 10.3389/fimmu.2024.1499301. eCollection 2024. Front Immunol. 2024. PMID: 39749323 Free PMC article. Review.
-
SpatialDeX Is a Reference-Free Method for Cell-Type Deconvolution of Spatial Transcriptomics Data in Solid Tumors.Cancer Res. 2025 Jan 2;85(1):171-182. doi: 10.1158/0008-5472.CAN-24-1472. Cancer Res. 2025. PMID: 39387817 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources