DSP-KD: Dual-Stage Progressive Knowledge Distillation for Skin Disease Classification
- PMID: 38247947
- PMCID: PMC10813127
- DOI: 10.3390/bioengineering11010070
DSP-KD: Dual-Stage Progressive Knowledge Distillation for Skin Disease Classification
Abstract
The increasing global demand for skin disease diagnostics emphasizes the urgent need for advancements in AI-assisted diagnostic technologies for dermatoscopic images. In current practical medical systems, the primary challenge is balancing lightweight models with accurate image analysis to address constraints like limited storage and computational costs. While knowledge distillation methods hold immense potential in healthcare applications, related research on multi-class skin disease tasks is scarce. To bridge this gap, our study introduces an enhanced multi-source knowledge fusion distillation framework, termed DSP-KD, which improves knowledge transfer in a dual-stage progressive distillation approach to maximize mutual information between teacher and student representations. The experimental results highlight the superior performance of our distilled ShuffleNetV2 on both the ISIC2019 dataset and our private skin disorders dataset. Compared to other state-of-the-art distillation methods using diverse knowledge sources, the DSP-KD demonstrates remarkable effectiveness with a smaller computational burden.
Keywords: ISIC2019; diverse knowledge; knowledge distillation; skin disease classification.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures










Similar articles
-
SSD-KD: A self-supervised diverse knowledge distillation method for lightweight skin lesion classification using dermoscopic images.Med Image Anal. 2023 Feb;84:102693. doi: 10.1016/j.media.2022.102693. Epub 2022 Nov 13. Med Image Anal. 2023. PMID: 36462373
-
Efficient skin lesion segmentation with boundary distillation.Med Biol Eng Comput. 2024 Sep;62(9):2703-2716. doi: 10.1007/s11517-024-03095-y. Epub 2024 May 1. Med Biol Eng Comput. 2024. PMID: 38691269
-
Knowledge distillation approach for skin cancer classification on lightweight deep learning model.Healthc Technol Lett. 2025 Jan 15;12(1):e12120. doi: 10.1049/htl2.12120. eCollection 2025 Jan-Dec. Healthc Technol Lett. 2025. PMID: 39816700 Free PMC article.
-
Light-M: An efficient lightweight medical image segmentation framework for resource-constrained IoMT.Comput Biol Med. 2024 Mar;170:108088. doi: 10.1016/j.compbiomed.2024.108088. Epub 2024 Feb 3. Comput Biol Med. 2024. PMID: 38320339
-
Efficient image classification through collaborative knowledge distillation: A novel AlexNet modification approach.Heliyon. 2024 Jul 14;10(14):e34376. doi: 10.1016/j.heliyon.2024.e34376. eCollection 2024 Jul 30. Heliyon. 2024. PMID: 39113984 Free PMC article.
Cited by
-
M3AE-Distill: An Efficient Distilled Model for Medical Vision-Language Downstream Tasks.Bioengineering (Basel). 2025 Jul 6;12(7):738. doi: 10.3390/bioengineering12070738. Bioengineering (Basel). 2025. PMID: 40722430 Free PMC article.
-
Skin Lesion Classification Through Test Time Augmentation and Explainable Artificial Intelligence.J Imaging. 2025 Jan 9;11(1):15. doi: 10.3390/jimaging11010015. J Imaging. 2025. PMID: 39852328 Free PMC article.
-
LightweightUNet: Multimodal Deep Learning with GAN-Augmented Imaging Data for Efficient Breast Cancer Detection.Bioengineering (Basel). 2025 Jan 15;12(1):73. doi: 10.3390/bioengineering12010073. Bioengineering (Basel). 2025. PMID: 39851348 Free PMC article.
References
-
- Karimkhani C., Dellavalle R.P., Coffeng L.E., Flohr C., Hay R.J., Langan S.M., Nsoesie E.O., Ferrari A.J., Erskine H.E., Silverberg J.I. Global skin disease morbidity and mortality: An update from the global burden of disease study 2013. JAMA Dermatol. 2017;153:406–412. doi: 10.1001/jamadermatol.2016.5538. - DOI - PMC - PubMed
-
- Walter F.M., Prevost A.T., Vasconcelos J., Hall P.N., Burrows N.P., Morris H.C., Kinmonth A.L., Emery J.D. Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general practice: A diagnostic validation study. Br. J. Gen. Pract. 2013;63:e345–e353. doi: 10.3399/bjgp13X667213. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous