Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Sep 29;4(3):43-53.
doi: 10.17816/CP11030.

Machine learning techniques in diagnostics and prediction of the clinical features of schizophrenia: a narrative review

Affiliations
Review

Machine learning techniques in diagnostics and prediction of the clinical features of schizophrenia: a narrative review

Vadim R Gashkarimov et al. Consort Psychiatr. .

Abstract

Background: Schizophrenia is a severe psychiatric disorder associated with a significant negative impact. Early diagnosis and treatment of schizophrenia has a favorable effect on the clinical outcome and patients quality of life. In this context, machine learning techniques open up new opportunities for a more accurate diagnosis and prediction of the clinical features of this illness.

Aim: This literature review is aimed to search for information on the use of machine learning techniques in the prediction and diagnosis of schizophrenia and the determination of its clinical features.

Methods: The Google Scholar, PubMed, and eLIBRARY.ru databases were used to search for relevant data. The review included articles that had been published not earlier than January 1, 2010, and not later than March 31, 2023. Combinations of the following keywords were applied for search queries: machine learning, deep learning, schizophrenia, neural network, predictors, artificial intelligence, diagnostics, suicide, depressive, insomnia, and cognitive. Original articles regardless of their design were included in the review. Descriptive analysis was used to summarize the retrieved data.

Results: Machine learning techniques are widely used in the functional assessment of patients with schizophrenia. They are used for interpretation of MRI, EEG, and actigraphy findings. Also, models created using machine learning algorithms can analyze speech, behavior, and the creativity of people and these data can be used for the diagnosis of psychiatric disorders. It has been found that different machine learning-based models can help specialists predict and diagnose schizophrenia based on medical history and genetic data, as well as epigenetic information. Machine learning techniques can also be used to build effective models that can help specialists diagnose and predict clinical manifestations and complications of schizophrenia, such as insomnia, depressive symptoms, suicide risk, aggressive behavior, and changes in cognitive functions over time.

Conclusion: Machine learning techniques play an important role in psychiatry, as they have been used in models that help specialists in the diagnosis of schizophrenia and determination of its clinical features. The use of machine learning algorithms is one of the most promising direction in psychiatry, and it can significantly improve the effectiveness of the diagnosis and treatment of schizophrenia.

Keywords: artificial intelligence; machine learning; neural network; predictors; schizophrenia.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Similar articles

Cited by

References

    1. El Naqa I, Murphy MJ. In: Machine Learning in Radiation Oncology: Theory and Applications. El Naqa I, Murphy MJ, editors. Springer, Cham; 2015. pp. 3–11.What is machine learning? - DOI
    1. Carleo Giuseppe, Cirac Ignacio, Cranmer Kyle, Daudet Laurent, Schuld Maria, Tishby Naftali, Vogt-Maranto Leslie, Zdeborová Lenka. Machine learning and the physical sciences Reviews of Modern Physics. 2019 Dec 06;91(4) doi: 10.1103/revmodphys.91.045002. - DOI
    1. Jordan M. I., Mitchell T. M. Machine learning: Trends, perspectives, and prospects Science. 2015;349(6245) doi: 10.1126/science.aaa8415. - DOI - PubMed
    1. Patel Jigar, Shah Sahil, Thakkar Priyank, Kotecha K. Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques Expert Systems with Applications. 2015;42(1) doi: 10.1016/j.eswa.2014.07.040. - DOI
    1. Larrañaga Pedro, Calvo Borja, Santana Roberto, Bielza Concha, Galdiano Josu, Inza Iñaki, Lozano José A., Armañanzas Rubén, Santafé Guzmán, Pérez Aritz, Robles Victor. Machine learning in bioinformatics Briefings in Bioinformatics. 2006;7(1) doi: 10.1093/bib/bbk007. - DOI - PubMed

LinkOut - more resources