Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 15:247:118219.
doi: 10.1016/j.envres.2024.118219. Epub 2024 Jan 20.

Integrating DFT and machine learning for the design and optimization of sodium alginate-based hydrogel adsorbents: Efficient removal of pollutants from wastewater

Affiliations

Integrating DFT and machine learning for the design and optimization of sodium alginate-based hydrogel adsorbents: Efficient removal of pollutants from wastewater

Muhammad Umar et al. Environ Res. .

Abstract

This study presents a novel approach to design and optimize a sodium alginate-based hydrogel (SAH) for efficient adsorption of the model water pollutant methylene blue (MB) dye. Utilizing density functional theory (DFT) calculations, sodium alginate-g-poly (acrylamide-co-itaconic acid) was identified with the lowest adsorption energy (Eads) for MB dye among 14 different clusters. SAHs were prepared using selected monomers and sodium alginate combinations through graft co-polymerization, and swelling studies were conducted to optimize grafting conditions. Advanced characterization techniques, including FTIR, XRD, XPS, SEM, EDS, and TGA, were employed, and the process was optimized using statistical and machine learning tools. Screening tests demonstrated that Eads serves as an effective predicting indicator for adsorption capacity (qe) and MB removal efficiency (RRMB,%), with reasonable agreement between Eads and both responses under given conditions. Process modeling and optimization revealed that 5 mg of selected SAH achieves a maximum qe of 3244 mg g-1 at 84.4% RRMB under pH 8.05, 98.8 min, and MB concentration of 383.3 mg L-1, as identified by the desirability function approach. Moreover, SAH effectively eliminated various contaminants from aqueous solutions, including sulfasalazine (SFZ) and dibenzothiophene (DBT). MB adsorption onto selected SAH was exothermic, spontaneous, and followed the pseudo-first-order and Langmuir-Freundlich isotherm models. The remarkable ability of SAH to adsorb MB is attributed to its well-designed structure predicted through DFT and optimal operational conditions achieved by AI-based parametric optimization. By integrating DFT-based computations and machine-learning tools, this study contributes to the efficient design of adsorbent materials and optimization of adsorption processes, also showcasing the potential of SAH as an efficient adsorbent for the abatement of aqueous pollution.

Keywords: ANN; Adsorbent; DFT; Design; Hydrogel; Methylene blue; Optimization.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources