Long Non-Coding RNAs as Regulators for Targeting Breast Cancer Stem Cells and Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential
- PMID: 38254782
- PMCID: PMC10814583
- DOI: 10.3390/cancers16020290
Long Non-Coding RNAs as Regulators for Targeting Breast Cancer Stem Cells and Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential
Abstract
Breast cancer stem cells (BCSCs) is a subpopulation of cancer cells with self-renewal and differentiation capacity, have been suggested to give rise to tumor heterogeneity and biologically aggressive behavior. Accumulating evidence has shown that BCSCs play a fundamental role in tumorigenesis, progression, and recurrence. The development of immunotherapy, primarily represented by programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, has greatly changed the treatment landscape of multiple malignancies. Recent studies have identified pervasive negative associations between cancer stemness and anticancer immunity. Stemness seems to play a causative role in the formation of cold tumor immune microenvironment (TIME). The multiple functions of long non-coding RNAs (lncRNAs) in regulating stemness and immune responses has been recently highlighted in breast cancer. The review focus on lncRNAs and keys pathways involved in the regulation of BCSCs and TIME. Potential clinical applications using lncRNAs as biomarkers or therapies will be discussed.
Keywords: breast cancer stem cell; heterogeneity; lncRNA; therapeutic target; tumor immune microenvironment.
Conflict of interest statement
The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Figures


References
-
- Korkaya H., Kim G.I., Davis A., Malik F., Henry N.L., Ithimakin S., Quraishi A.A., Tawakkol N., D’Angelo R., Paulson A.K., et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell. 2012;47:570–584. doi: 10.1016/j.molcel.2012.06.014. - DOI - PMC - PubMed
-
- Dong H., Hu J., Zou K., Ye M., Chen Y., Wu C., Chen X., Han M. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol. Cancer. 2019;18:3. doi: 10.1186/s12943-018-0931-9. - DOI - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials