Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jan 11;16(2):231.
doi: 10.3390/nu16020231.

An Overview of Different Vitamin D Compounds in the Setting of Adiposity

Affiliations
Review

An Overview of Different Vitamin D Compounds in the Setting of Adiposity

Eva E Spyksma et al. Nutrients. .

Abstract

A large body of research shows an association between higher body weight and low vitamin D status, as assessed using serum 25-hydroxyvitamin D concentrations. Vitamin D can be metabolised in adipose tissue and has been reported to influence gene expression and modulate inflammation and adipose tissue metabolism in vitro. However, the exact metabolism of vitamin D in adipose tissue is currently unknown. White adipose tissue expresses the vitamin D receptor and hydroxylase enzymes, substantially involved in vitamin D metabolism and efficacy. The distribution and concentrations of the generated vitamin D compounds in adipose tissue, however, are largely unknown. Closing this knowledge gap could help to understand whether the different vitamin D compounds have specific health effects in the setting of adiposity. This review summarises the current evidence for a role of vitamin D in adipose tissue and discusses options to accurately measure vitamin D compounds in adipose tissue using liquid chromatography tandem mass spectrometry (LC/MS-MS).

Keywords: 25-hydroxyvitamin D; C3 epimer; inflammation; metabolic health; obesity; overweight.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic overview of vitamin D metabolism in humans. ↑ indicates an increase, ↓ indicates a decrease. Abbreviations: ultraviolet light short wavelength (UVB); calcidiol (25(OH)D); calcitriol (1,25(OH)2D); retinoid X receptor (RXR); vitamin D receptor (VDR); vitamin D response element (VDRE); parathyroid hormone (PTH); calcium (Ca).
Figure 2
Figure 2
Depiction of the relation between vitamin D status and white adipose tissue (WAT) mass in people with higher body weight. The response to vitamin D supplementation is altered in people with higher body weight, and an increased BMI is associated with lower serum 25(OH)D levels. In addition, white adipocytes express the VDR and hydroxylase enzymes. Vitamin D can have a beneficial effect on processes in WAT; however, it is unknown whether these effects are mediated by specific vitamin D compounds. ↑ indicates an increase, ↓ indicates a decrease. Abbreviations: BMI, body mass index; VDR, vitamin D receptor; WAT, white adipose tissue; 25(OH)D, 25-hydroxyvitamin D.

References

    1. Holick M.F. Vitamin D and bone health. J. Nutr. 1996;126:1159S–1164S. doi: 10.1093/jn/126.suppl_4.1159S. - DOI - PubMed
    1. Holick M.F. The role of vitamin D for bone health and fracture prevention. Curr. Osteoporos. Rep. 2006;4:96–102. doi: 10.1007/s11914-996-0028-z. - DOI - PubMed
    1. Bouillon R., Manousaki D., Rosen C., Trajanoska K., Rivadeneira F., Richards J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2022;18:96–110. doi: 10.1038/s41574-021-00593-z. - DOI - PMC - PubMed
    1. Holick M.F. Deficiency of sunlight and vitamin D. BMJ. 2008;336:1318–1319. doi: 10.1136/bmj.39581.411424.80. - DOI - PMC - PubMed
    1. Cashman K.D. Vitamin D deficiency: Defining, prevalence, causes, and strategies of addressing. Calcif. Tissue Int. 2020;106:14–29. doi: 10.1007/s00223-019-00559-4. - DOI - PubMed