Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;30(10):6956-6969.
doi: 10.1109/TVCG.2024.3357568. Epub 2024 Sep 5.

AnimeDiffusion: Anime Diffusion Colorization

AnimeDiffusion: Anime Diffusion Colorization

Yu Cao et al. IEEE Trans Vis Comput Graph. 2024 Oct.

Abstract

Being essential in animation creation, colorizing anime line drawings is usually a tedious and time-consuming manual task. Reference-based line drawing colorization provides an intuitive way to automatically colorize target line drawings using reference images. The prevailing approaches are based on generative adversarial networks (GANs), yet these methods still cannot generate high-quality results comparable to manually-colored ones. In this article, a new AnimeDiffusion approach is proposed via hybrid diffusions for the automatic colorization of anime face line drawings. This is the first attempt to utilize the diffusion model for reference-based colorization, which demands a high level of control over the image synthesis process. To do so, a hybrid end-to-end training strategy is designed, including phase 1 for training diffusion model with classifier-free guidance and phase 2 for efficiently updating color tone with a target reference colored image. The model learns denoising and structure-capturing ability in phase 1, and in phase 2, the model learns more accurate color information. Utilizing our hybrid training strategy, the network convergence speed is accelerated, and the colorization performance is improved. Our AnimeDiffusion generates colorization results with semantic correspondence and color consistency. In addition, the model has a certain generalization performance for line drawings of different line styles. To train and evaluate colorization methods, an anime face line drawing colorization benchmark dataset, containing 31,696 training data and 579 testing data, is introduced and shared. Extensive experiments and user studies have demonstrated that our proposed AnimeDiffusion outperforms state-of-the-art GAN-based methods and another diffusion-based model, both quantitatively and qualitatively.

PubMed Disclaimer