Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Mar;252(3 Pt 1):C269-76.
doi: 10.1152/ajpcell.1987.252.3.C269.

Cell volume, K transport, and cell density in human erythrocytes

Cell volume, K transport, and cell density in human erythrocytes

C Brugnara et al. Am J Physiol. 1987 Mar.

Abstract

We report here studies on the regulation of cell volume and K transport in human erythrocytes separated according to density. When cell volume was increased (isosmotic swelling, nystatin technique), erythrocytes of the least dense but not of the densest fraction shrunk back toward their original volume. This process was due to a ouabain (0.1 mM) and bumetanide (0.01 mM) (OB)-resistant K loss. OB-resistant K+ efflux from the least dense fraction was stimulated by hypotonic swelling and had a bell-shaped dependence on pH (pH optimum 6.75-7.0). These pH and volume effects were not evident in the densest fraction. The swelling-induced K+ efflux from the least dense fraction was inhibited when chloride was substituted by nitrate, thiocyanate, and acetate, whereas it was stimulated by bromide. Increasing cell Mg2+ content also markedly inhibited K+ efflux from isosmotically swollen cells. N-ethylmaleimide (NEM, 1 mM) greatly increased OB-resistant K+ efflux from the least dense fraction but not from the densest fraction. These data reveal the presence, in the lease dense fraction of normal human erythrocytes, of a pathway for K+ transport that is dependent on volume, pH, and chloride, is inhibited by internal Mg2+, and possibly plays a role in determining the erythrocyte water and cation content.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources