Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 28:462:114872.
doi: 10.1016/j.bbr.2024.114872. Epub 2024 Jan 23.

Tonic noradrenergic input to neurons in the dorsal raphe nucleus mediates food intake in male mice

Affiliations

Tonic noradrenergic input to neurons in the dorsal raphe nucleus mediates food intake in male mice

Rafael Appel Flores et al. Behav Brain Res. .

Abstract

The dorsal raphe nucleus (DRN) is essential for the control of food intake. Efferent projections from the DRN extend to several forebrain regions that are involved in the control of food intake. However, the neurotransmitters released in the DRN related to the control of food intake are not known. We have previously demonstrated that a tonic α1 action on DRN neurons contributes to satiety in the fed rats. In this study we investigated the participation of norepinephrine (NE) signaling in the DRN in the satiety response. Intra-DRN administration of NE causes an increase in the 2-hour food intake of sated mice, an effect that was blocked by previous administration of yohimbine, an α2 antagonist. Similarly, Intra-DRN administration of clonidine, an α2 agonist, increases food intake in sated mice. This result indicates that in the satiated mice exogenous NE acts on α2 receptors to increase food intake. Furthermore, administration of phenylephrine, an α1 agonist, decreases food intake in fasted mice and prazosin, an α1 antagonist, increases food intake in the sated mice. Taken together these results indicate that, in a satiated condition, a tonic α1 adrenergic action on the DRN neurons inhibits food intake and that exogenous NE administered to the DRN acts on α2 adrenergic receptors to increase food intake. These data reinforce the intricate neuronal functioning of the DRN and its effects on feeding.

Keywords: Dorsal raphe nucleus; Food intake; Hunger; Norepinephrine; Satiety; Serotonin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources